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Alexander Shroyer

DEEP LEARNING FOR OBFUSCATED CODE ANALYSIS

Modern software development relies increasingly on third-party code dependencies, which

enables rapid development but also increases risk of introducing bugs, malware, or unautho-

rized intellectual property. The goal of this dissertation is to reduce these risks making them

easier to detect. Determining the meaning of an arbitrary program reduces to solving the

halting problem, which is provably impossible. Instead, this work focuses on a narrower

scope: to assign a similarity metric between a known program and an unknown one.

To be able to quantify the distance between two programs, one must take into account

slight variations in programs due to diverse compilation, whether debug symbols are stripped,

or even intentional obfuscation. We address this variation by adding diversity to our training

sample data through diverse compilation and deliberate obfuscation. These methods pre-

serve the syntactic and structural qualities of valid code and permit augmentation of sparse

datasets on a large scale.

We train a variety of models to classify programs in the augmented training data. These

trained models can now predict which parts of unknown programs are most similar to the

training programs. In this work we train on standard library functions originally implemented

in the C programming language within the musl library. This forms the basis of a novel

method which can be applied to other codebases in order to quickly scan for similar examples

in unfamiliar code.
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CHAPTER 1

INTRODUCTION

1.1 Security is easy to sacrifice

As demand for software increases, a common industry best practice has emerged: “don’t reinvent

the wheel”. This saying is shorthand for a broader set of principles which are sometimes in tension.

One of these is developer efficiency. If all other things are equal, increasing developer efficiency

is desirable. Another principle is the performance of the software at runtime, from the perspective

of the end-user or customer. If all else is equal, the user would prefer higher performing software.

Security is another principle to round out this list. If all else is equal, both the business and their

customers want software to be secure, not leak personal information, nor contain vulnerabilities

that could ruin everyone’s day.

This is by no means an exhaustive list of all the different priorities which must be balanced

by software engineers, but it is an illustrative subset. These different aspects of a software artifact

– performance, security, developer productivity – all exist in some proportions in any software

project. Sometimes we find out about a security problem after a data leak or when a company

decides to pay a ransom to regain control of their data.

From the sidelines, it is tempting to look down at such cases and imagine that we are more

disciplined at writing software than those other folks. But the uncomfortable truth is that even

highly talented and careful software engineers sometimes make mistakes. Sometimes there are

hard deadlines or intense competition that encourages a shift in priorities, and often security is

seen as the easy sacrifice.

Turning your focus away from security has short-term benefits but the long-term costs are

unpredictable. As a simple example, many databases have a default administrator username and

password such as admin/admin. Leaving these default settings makes it easier and faster to set

up the database (short-term benefit). This is an easy target for a would-be attacker, which might
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someday harm your company. But on the other hand, not every company who makes this mistake

suffers the consequences. A principled approach to software security therefore requires not only

constant vigilance to external threats, but also your own nature.

1.2 Costs and benefits of external dependencies

In this software development environment, when confronted with a need to implement a common

feature, the best practice advice is to use a standard library if possible. If such functionality is not

present in a standard library module, try to find a third-party module. Only if no such functionality

exists in either the standard library or any third-party module, should a developer spend their

own time to implement it. This ranked ordering of preferences has some positive consequences:

module developers can afford to specialize on only the niche function covered by their module.

By deferring responsibility of certain functions to specialists, most developers can be generalists.

This is usually the right choice for an enterprise because it allows them to nimbly adjust to new

products or market demands.

The downside is that as more enterprises rely on a small set of commonly used modules, those

modules become attractive targets for attackers. From the attacker’s point of view, it is more effi-

cient to focus an attack on one module used by many companies than by targeting each individual

company separately.

1.3 Make it easier to do the right thing

Given human nature and the pressure to compete, is security doomed to become a perpetual af-

terthought? Possibly not if we can lower the cost of doing the right thing. Currently, there are a

handful of tools to help automate security analysis as part of the software development process.

But generally these tools are either easy to use or they offer deep and valuable insights. This

dissertation aims to find a more optimal balance between these two extremes.
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1.4 Choose one part of the larger problem

These concepts of balancing security with features and performance are abstract and broad, and

beyond the scope of a single dissertation. In the course of this research, the committee helped nar-

row the scope of research. Initially, we had ambitions to analyze the output of hardware synthesis

tools used to configure field programmable gate arrays (FPGAs) and application specific integrated

circuits (ASICs). These are forms of software-defined hardware, and we are concerned with the

security of their respective supply chains. While this concern is justified, in order to implement

the kernel of our idea (data augmentation) we discovered that these forms of code are far too limit-

ing. Simply put, current FPGA and ASIC generation tools are far too slow to generate a sufficient

quantity of synthetic data within any reasonable period of time.

1.5 Binary analysis

This dissertation focuses on the task of analyzing compiled binary programs. Unlike source code,

compiled programs often lack familiar human-readable notation If the program has been stripped

of debug symbols, then essentially all that is left is a sequence of fine-grained instructions without

any contextual information about what the instructions should do or why they exist. The two main

ways to analyze such programs are statically or dynamically. Dynamic analysis runs the code to

observe its side-effects, while static analysis tries to assign probable meaning to the code without

executing it. While dynamic analysis can demonstrably prove that a chunk of code has some effect,

it is costly to run.

In general, dynamic analysis should be carried out in an isolated environment to protect the

testing environment from either accidental bugs or malware. This isolation can take the form of

a dedicated test machine or a virtual machine. Running a physical or virtual machine is slower

than reading the code, and some sequences of instructions may never terminate, which means that

exhaustive checking is impossible for dynamic analysis tools.

Static analysis on the other hand can include exhaustive checks because executable code has
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finite length. Unfortunately, it does not replace dynamic analysis entirely, because the resolution

of static analysis is limited to the meaning that it can assign to patterns of executable code. To a

first approximation, dynamic analysis is slow but precise, and static analysis is fast but vague.

A less common hybrid between static and dynamic analysis is symbolic execution, in which

part or all of the program’s execution state is simulated with symbolic values rather than concrete

values as would exist in a dynamic context. This approach can be used to explore some of the

runtime execution paths more efficiently than dynamic analysis, but maintaining simulated states

is costly.

1.6 Obfuscation as data augmentation

Binary analysis is made more difficult by intentional obfuscation in which the software developer

makes changes to the syntax of the code in order to hide its meaning from static analysis tools.

Stripped and obfuscated code is the most challenging to decipher. However, this dissertation uses

one key insight about obfuscation to turn it into an advantage. Because obfuscation by design

preserves the meaning of the original code, it can act as an effective form of data augmentation.

This allows us to synthesize larger data sets from a small set of original programs, and those

data will retain the essential qualities of the originals despite being entirely different in appearance.

We combine this shift in perspective with existing approaches to pattern detection from machine

learning, and the result is a highly effective method of classifying unknown binary data. Unlike

previous efforts in this domain, the approach in this work is robust to extreme levels of obfuscation.

This scenario represents a worst-case failure mode of existing approaches, because a small increase

in effort on the part of an attacker results in a complete failure of the defenses. Models trained

to recognize obfuscation-augmented data stop the arms race between attackers and defenders by

reducing the expected value of added obfuscation.
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1.7 Contributions of this dissertation

In this document, we include three chapters exploring the obfuscation-augmented approach to bi-

nary analysis. The first of these chapters, Data Augmentation, explores different methods of data

augmentation for binary code and motivates why obfuscation is more ideal than other methods.

The next chapter, Detecting Standard Library Functions in Obfuscated Code applies this concept

using an existing machine learning model to the task of identifying standard library functions. The

third chapter, Function Classification for Obfuscated Binary Code, further refines this exploration

with a comprehensive comparison of different types of machine learning models used across dif-

ferent representations of the same data. In addition, this third chapter explores the value added

by inclusion of graph structural data of the binary code. A fourth chapter reviews the other schol-

arly works related to this topic and briefly touches on tangentially related topics such as electronic

design automation tools. The benefits and limitations of our approach are summarized in a fifth

chapter, and we summarize our conclusions in a final chapter before listing bibliographic refer-

ences and curriculum vitae.
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CHAPTER 2

DATA AUGMENTATION

A key challenge of applying machine learning techniques to binary data is the lack of a large

corpus of labeled training data. One solution to the lack of real-world data is to create synthetic

data from real data through augmentation. In this chapter, we demonstrate data augmentation

techniques suitable for source code and compiled binary data. By augmenting existing data with

semantically-similar sources, training set size is increased, and machine learning models better

generalize to unseen data.

2.1 Introduction

Modern software development relies heavily on third-party code and open ecosystems, which aid

developer productivity, but are also attractive targets for malicious actors. Attackers may release

malware with a name similar to a real package in an attack called “typosquatting”, or try to gain

access to an existing project and quietly add malicious code[1]. New technologies such as GitHub’s

Copilot1 provide developers with snippets of third party code sourced from public repositories,

which in addition to aiding productivity, may also be used as an attack vector for injecting publicly

available malware into new code.

Recent typosquatting attacks include a malware named colourama, which targeted the similarly-

named Python package colorama. The malware bundled cryptocurrency mining code alongside

the original code[2], so developers were less likely to notice the problem. Similarly, the node.js

malware crossenv typosquatted cross-env and exfiltrated user data. Detecting and prevent-

ing typosquatting is an active area of research[3].

Today’s developers need tools to help find hidden malware in third party code. Machine learn-

ing techniques are rapidly finding applications in this domain because models can be made general

enough to classify never-before-seen code as either malware or not. However, a limiting factor for
1https://github.com/features/copilot/
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machine learning model efficacy is the quantity of training data. One project used a large dataset of

66,388 PowerShell commands (6290 malicious)[4]. Another project sourced approximately 3500

implementations of 6 different algorithms from GitHub[5]. However, a single PowerShell com-

mand may represent a stand-alone program or a small part of a larger program, and not all projects

have access to such a large volume of data as these examples.

When the quantity of available data is too small, a classic approach to artificially synthesizing

more data is called data augmentation. In computer vision, image augmentation includes rotation,

translation, adjusting color, or adding noise. In natural language processing, text is augmented

by translating to another language and back again, adding or deleting words, and permuting word

order. In this work, we examine data augmentation techniques suitable for source and compiled

binary code analysis.

Data Augmentation for Source Code. Some data augmentation methods from the Natural Lan-

guage Processing (NLP) domain also work on source code. Like natural language, source code

can be thought of as a 1-dimensional sequence of symbols, with specific word formation rules.

However, in natural languages it is rare for an author to invent new words, but programmers create

new names routinely. Programming language is also more structured than natural language, with

extensive use of explicit grouping structures like parentheses and semantically significant indenta-

tion and punctuation. These aspects make it harder to define “synonyms” for word-like tokens in

programming languages or to perform transpositions without changing the program’s meaning or

breaking it completely.

Source code can also be thought of as a 2-dimensional image where each character or symbol

represents a “pixel”. This can be done by treating line feed characters as vertical offsets so the

“image” is the same character grid as used by all common text editors. Sequential code can be

embedded into a square matrix by treating sequences of two tokens as row/column indexes and

recording occurrence counts of the two-token n-gram at each index.

Most code has non-linear control flow in the form of conditional branching, and can be embed-

ded into a graph data structure as in [6]. This type of embedding can be further transformed into
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a regular or rectangular shape such as an adjacency matrix which is more amenable to processing

by machine learning libraries. These machine learning libraries typically expect samples to have

uniform shape. Any of these interpretations can be further augmented by adding pseudo-random

noise, for example additive Gaussian or Poisson noise as used by [7].

Data augmentation techniques which preserve the semantics of the original source code require

specialized knowledge of the source code languages used. For C language, examples of tools which

can alter the syntax while preserving semantics include obfuscator-llvm[8] and Tigress[9].

In this project, we apply code-specific data augmentation to standard library code and ana-

lyze how it affects the robustness of a machine learning model in detecting specific functions in

compiled binary data.

2.2 Related Work

Recently, Bayer et. al [10] showed that data augmentation can be performed on natural language

texts by leveraging a large pre-trained model like GPT-2. This allowed then to generate novel

tokens for insertion into their data set. Critically, these novel tokens were derived from a large

model which preserved the semantic relationships between words. This type of token generation

would be beneficial to future work in code analysis, but first the field would need a large pre-trained

model. One potential use of this technology could train a model on a large corpus of source code,

and use this as a mechanism for generating summary tokens for local context. GitHub’s Copilot

project uses OpenAI’s Codex language model2, whose purpose is to translate natural language

commentary into valid code. GitHub is well positioned to take advantage of the Codex model due

to their massive collection of source code as well as commentary explicitly related to that code.

While generating code from commentary is related to semantic analysis of obfuscated binary code,

it is not identical. For example, in the task of reverse engineering an obfuscated binary blob, natural

language commentary may be either non-existent or intentionally misleading as an additional form

of obfuscation.
2https://openai.com/blog/openai-codex/
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Marastoni et. al found that reshaping binary files into 2d image data allowed them to use

conventional convolutional neural networks (CNNs) even though they arbitrarily restructured 1d

data into 2d by choosing an image width of 64[11]. They showed that reshaping actual image

data had negligible effect on accuracy, but reshaping compiled program data into different width

images had a drastic effect on accuracy. Their explanation is that the model is more complex

than simple digit recognition. Another consideration is that by imposing an arbitrary shape on

one-dimensional data, their CNN finds correlations between instruction values that happen to be

arranged on intervals of 64 bytes. This work uses Tigress to augment a selection of 47 C programs

and ultimately obtains a distribution of 9400 programs representing the 47 original categories.

Gupta et. al applied a deep neural network with attention mechanism to find syntactic fixes to

6971 buggy student programs[12]. This task was able to make use of an oracle (compiler error

messages) - if the compiler produced an error message, the program contained at least one bug.

While this approach is language-agnostic, it is limited to only syntactic errors. Logical errors and

malware cannot be detected by such an approach.

An early example of using data augmentation for malware detection is due to Catak et. al[7]. In

this work, random noise is injected into examples of both regular and malware programs. Like [11],

Catak et. al[7] use a CNN model after reshaping the programs into images. However, instead of

using the raw byte data, they synthesize a color PNG image file, by substituting decimal conversion,

entropy conversion, and zeros of the original program into the red, green, and blue pixel values,

respectively. This extra step embeds more summary information into each pixel compared to [11].

Asm2Vec[13] builds on the foundation of Word2Vec[14] and applies the Paragraph Vector-

Distributed Memory (PV-DM) concept [15] to assembly code. Like [11], this work also leverages

Tigress and obfuscator-llvm for data augmentation. However, Tigress-transformed programs were

omitted from the complete evaluation. A key method which distinguishes Asm2Vec is their use of

control flow to embed a partial function call graph structure in addition to PV-DM of instructions

and operands. Even though this type of graph embedding is not language agnostic, we believe

control flow more accurately models the structure of the code and should be preferred to n-gram
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embeddings or arbitrary reshaping into images.

2.3 Methods

Analysis of unknown binaries involves sorting through both familiar and unfamiliar code. Stan-

dard library code is included in many other programs, so the ability to robustly identify standard

library functions aids security analysis and reverse engineering efforts. In this work, we analyze

code from the musl C library[16]. It is used by projects such as Alpine Linux3 and Emscripten4.

The source code for musl in this work comes from the musl-cross-make toolchain at revi-

sion b2987065. We chose musl for this project because of its compactness and relative ease of

compilation compared to similar implementations such as glibc6.

Table 2.1: selected musl library functions

Library Function
ctype.h isalnum
ctype.h tolower
math.h exp
math.h floor
math.h pow
stdio.h fprintf
stdio.h printf
stdlib.h free
stdlib.h malloc
stdlib.h strtol
string.h strcat
string.h strstr

The internal implementation of musl contains many examples of code reuse. This means

that in order to compile a single musl function it is usually necessary to compile the library in

its entirety. After compilation, the resulting object file contains several thousand public symbols.

However, we restrict our analysis to a subset of library functions, given by Table 2.1. These

functions are common to many programs, but more importantly this subset contains groups of
3https://www.alpinelinux.org/
4https://emscripten.org/
5https://github.com/richard-vd/musl-cross-make/commit/b298706
6https://www.gnu.org/software/libc/
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similar functions. For example, printf and fprintf are similar, as are exp and pow, but

printf and pow are different. Likewise, we expect functions from the same library to be more

similar than functions from separate libraries. We use this similarity assumption as a baseline to

indicate whether we have found reasonable clusters of related functions.

2.3.1 Data Augmentation by Source Code Obfuscation

Obfuscating source code means modifying the structure of the code without changing its core

functionality. This can include trivial changes like renaming variables or more substantial changes

like altering the structure with additional control flow, spurious functions, or even self-modifying

code. For compiled languages, variable renaming has a negligible effect on the binary output,

and even some structural changes like changing while loops to for loops may result in the same

binary code after optimizations are applied. In this work, we obfuscate C sources using Tigress[17],

a source-to-source transformer for C code. Tigress transformations include: splitting functions into

smaller parts, merging multiple functions into one, flattening control flow, transforming functions

into specialized interpreters, and many others. Each transformation results in a different source

file, and multiple transformations may be combined to produce additional sources.

A challenge of using Tigress is that it can only transform a single C program file, not a library

consisting of many files, so to use Tigress with musl, the recommended method is to merge

separate files into one large C file. However, we determined this approach was infeasible, due to

musl-cross-make’s complex multi-stage build process.

Instead, we use a workflow as shown in Figure 2.1. We begin with the musl-cross-make

cross-compiler to build the shared object file libc.so, for the x86_64-linux-musl target.

Then we decompile functions of interest (and their sub-functions), using Ghidra[18]. Decompila-

tion is the process of generating C code from binary code. However, decompilation is an imperfect

process, and Ghidra’s decompiler does not always generate syntactically valid C code, so we manu-

ally fix the syntax errors in the decompiled C files. Through this method, we obtain a single-source

representation of the source code for all function. All the functions are finally merged to form a
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Figure 2.1: Generating diverse binaries from single sources
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new library file, which we call libc.h.

2.3.2 Semantics-Preserving Transformations

Tigress offers many program transformations, and many of these transformations can be combined.

We use two selected “recipes” from the Tigress website 7: Opaque Predicates, Branch Functions,

and Encoded Arithmetic and Virtualization and Self-Modification. In addition to these pre-made

recipes, we also transform with Encoded Arithmetic, Encode Branches, and Virtualize separately,

for a total of 5 separate transformed C sources. Generating 5 different sources is analogous to

obtaining 5 different standard library implementations, in that they all have the same semantics,

and only differ in implementation details.

2.3.3 Test Programs

Our approach aims to reliably detect standard library functions within an obfuscated binary. To

test this, we wrote multiple test programs which call functions from libc.h.

We use a selection of trivial C programs as data classes. Each program contains one library

function, and the filename describes the function under test, for example pow.c calls the pow

function. These programs are short and trivial, averaging about 14 lines of code. The key feature

of these programs is the inclusion of runtime data to prevent the compiler from optimizing away

the function under test. For example, the file pow.c is shown in Listing 2.2.

int main(int argc,char**argv){

return (int)pow(1.3, argc);

}

Figure 2.2: pow.c source code

Because the pow function uses the run-time parameter argc, its result cannot be computed at

compile-time. This ensures the binary code for the pow function appears in the compiled output.

7https://tigress.wtf/recipes.html
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Since all the test functions are trivial, the compiled outputs differ primarily by the library function

they contain, plus a negligible amount of boilerplate code for the main function. A version of

libc.h which provides the pow function is included at compile-time with gcc’s -include option.

When we compile the code, we only compile (with gcc -c) and do not link, which means no link-

time optimizations execute, and all libc.h functions appear in the object file, even if they are not

used in the test program.

2.3.4 Data Augmentation Types

We consider data augmentation to be an important step to improve binary analysis techniques from

a security perspective. Although there exist methods[19], [20] for determining binary semantics,

they are sensitive to minor semantic changes - exactly the kind of changes that would be caused

by the addition of malware patches to a binary. Other methods [21]–[23] rely on obtaining Control

Flow Graphs (CFGs) from the binary or other types of “expert knowledge”, which may induce

bias. The main goal of using Data Augmentation is to improve model accuracy by increasing the

amount of training data, all without introducing additional bias.

Data Augmentation involves making small changes to the source material which do not drastically

change its meaning. For example, adding small amounts of Gaussian noise to a picture of a teapot

results in a picture of a teapot with some bad pixels, not a picture of a cat. Similarly, image data is

often augmented through linear transformations such as rotations, scaling, shear, and transposing

along either vertical or horizontal axes. In NLP, sentences can be augmented without destroying

their meaning in several ways - by replacing words with synonyms, transposing some words, or

random insertions and deletions of words. In these examples, even though the transformations

may affect a large portion of the data (e.g. every pixel), they do not cause semantically large

changes to the data. However, directly applying the techniques of NLP to computer vision may not

be appropriate - for example random rearrangements of training data pixels may not improve the

accuracy of a computer vision system. Similarly, reversing sentence order is unlikely to improve

an NLP system. Therefore, when we adapt machine learning techniques to the domain of binary
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code analysis, we must consider what types of data augmentation are reasonable and will improve

our model.

In this work, we compare two types of data augmentation: semantics-preserving and NLP-style.

The semantics-preserving type is accomplished in two ways - first, using the Tigress obfuscator on

the C source code, and second, by using multiple compilation options to produce multiple object

files. The transformations provided by both Tigress and compilers such as GCC or Clang may

affect performance, memory usage, or code size, but they should always preserve the meaning of

the functions used (assuming no “undefined behavior” is invoked).

We define the NLP-style type to include permutations, additions, deletions, and substitutions of

object code tokens. These augmentations are performed on disassembled text files prior to using

them as training data in our model. This type of augmentation is more appropriate for binary code

than true random noise, because random bit flips could cause the program to crash - and malware

authors do not want their victim’s programs to crash, but rather execute the malicious code without

causing alarm.

An important note about the difference between semantics-preserving and NLP-style augmenta-

tions is that the NLP-style augmentations explicitly do not preserve the semantics of the original

sources. While the resulting code can still be compiled and executed, it no longer performs the

same function as the original code, and indeed may crash or corrupt data. We do not suggest

that anyone attempts to execute code which has been randomly permuted in this way, because its

semantics are undefined.

All of the code generated through the semantics-preserving transformations is always compiled,

and if executed it retains the semantics of the original source code. We note that some of these

obfuscations may increase memory usage, execution time, or both because obfuscation is in some

ways antithetical to optimization. However, we define semantics-preserving broadly to include

programs that have the same function but do not necessarily have identical running time or memory

usage.

Finally, we note that the transformations we apply in this work are syntactically valid at every
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phase. In the semantics-preserving phase, transformations occur at the level of C source code.

This code is then compiled to binary then disassembled into assembly code. The assembly code

is finally transformed by NLP-style transformations, which always maintain correct assembly lan-

guage syntax.

2.3.5 Machine Learning Model

In this work we wish to focus on the impact that data augmentation has on a machine learning

workflow. To that end we employ the established Asm2Vec[13] model. While we did spend some

time optimizing hyperparameters for Asm2Vec, ultimately we kept most of the values the same as

described by Ding et. al. Disassembly and training is facilitated by the open source implementa-

tion of Asm2Vec called Asm2Vec-pytorch[24]. The Asm2Vec model creates a vector embedding

from textual assembly code, so we first preprocess the object files by disassembling them with

the reverse engineering tool Radare2[25]. This step of the process transforms the compiled binary

code into human-readable assembly code.

Asm2Vec creates an embedding for an assembly function by two methods: graph embedding

and local contextual embedding. A function can be modeled as a graph of basic blocks, which are

sequences of instructions delimited by jump or call type instructions. Jump and call instructions

can be thought of as directional edges connecting one basic block to another. To obtain a graph

embedding, some call and jump instructions are followed to their destination, resulting in a

partial graph of a given function. Rather than exhaustively searching the complete basic block

graph, Asm2Vec samples each list of outgoing edges with 3 random walks.

Contextual embedding is achieved by first considering a particular instruction as the current in-

struction, then examining the instructions immediately before and after the current instruction.

The instructions before and after the current instruction are the “context” for the current instruc-

tion. These two instructions are tokenized into their opcodes and operands, and from these tokens

an embedding vector is obtained by a method called paragraph vector distributed memory (PV-

DM)[15], which represents the surrounding context for the current instruction.
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The vector embeddings obtained by PV-DM and random walks are combined into a single long

vector for each assembly function. Even though different assembly functions have different lengths

and different numbers of basic blocks, the vectors generated by Asm2Vec are all 200 units in

length. The uniform size facilitates more efficient training using modern hardware such as GPUs.
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Figure 2.3: Training loss for data augmentation

To train this model, a corpus of assembly functions is used as input, and at each iteration the model

attempts to predict the current token for each instruction in the function. When predicting the

current token, a ranked list of candidate tokens is used. If the current token matches the highest

ranked candidate, the gradients are unchanged. However, if the current token is in the list of

candidates but not ranked highly, the gradients are changed. And finally if the current token is not

contained in the list of candidates, the gradients are adjusted more. Predicting the current token is

a finer grained task than predicting the current function.

Because Asm2Vec aims to find binary clones rather than similar binary functions, its loss function

optimizes for predicting sequences of assembly tokens. In this work, we are more interested in

classification of similar functions. Ding et. al [13] do not publish results for code which was
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obfuscated by Tigress, due to the low accuracy of their model with this type of obfuscated data.

We expand on Ding et. al by using their model on code which has been obfuscated by Tigress in

multiple ways.

Figure 2.3 shows the mean of the binary cross-entropy between the predicted and actual tokens

across the entire dataset at each epoch during training. This compares multiple loss profiles. Data

marked Plain uses only the obfuscated disassembled functions, and data marked NLP adds copies

of these obfuscated functions which are further transformed by a selection of methods inspired by

NLP. Each line of text in the disassembled function contains either header information, labels, or

opcodes/operands. The first 3 lines of the file contain header information, which we do not modify.

We apply textual transformations to augment the existing assembly with additional variations.

Those transformations include:

• delete lines

• duplicate lines

• transpose lines

For each line of assembly which is neither a header nor a label, we apply one of these transforma-

tions with probability P = 0.1, P = 0.2, or P = 0.4.

As figure 2.3 shows, data containing any NLP-augmented assembly converges more quickly but to

a higher loss value than the Plain assembly code. Loss increases to ≈ 0.21 as the probability of a

transformation increases. Data containing only Plain assembly converges more slowly to a loss of

≈ 0.19.

Table 2.2 shows excerpts from two disassembled object files, each based on fprintf, with the

options -O2 and -funroll-all-loops added during compilation. The two columns show the

original disassembled file on the left, and on the right, a version of that file which has been aug-

mented with transposed lines, highlighted in bold face. The transposing occurred in this example

with probability P = 0.1. Lines 7 and 26 of the original replace lines 20 and 28 of the transposed

version, respectively.
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Table 2.2: Assembly augmentation by transposing lines

line original transposed
1 .name sym.__fwritex .name sym.__fwritex
2 .offset 000000000800b9b0 .offset 000000000800b9b0
3 .file fprintf-O2-unroll-all-loops.o .file fprintf-O2-unroll-all-loops.o
4 LABEL102: LABEL102:
5 cmp r9, rbp cmp r9, rbp
6 cjmp LABEL11 cjmp LABEL11
7 mov eax, dword [rbx+CONST] mov eax, dword [rbx+CONST]
8 test eax, eax test eax, eax
9 cjmp LABEL14 cjmp LABEL14

10 mov r11, rbp mov r11, rbp
11 mov rax, rbp mov rax, rbp
12 and r11d, CONST and r11d, CONST
13 LABEL29: LABEL29:
14 sub rax, CONST sub rax, CONST
15 cmp byte [r8+rax], CONST cmp byte [r8+rax], CONST
16 cjmp LABEL11 cjmp LABEL11
17 cjmp LABEL18 cjmp LABEL18
18 lea rax, [rbp+CONST] lea rax, [rbp+CONST]
19 cmp byte [r8+rax], CONST cmp byte [r8+rax], CONST
20 cjmp LABEL11 mov eax, dword [rbx+CONST]
21 cmp r11, CONST cmp r11, CONST
22 cjmp LABEL18 cjmp LABEL18
23 cmp r11, CONST cmp r11, CONST
24 cjmp LABEL25 cjmp LABEL25
25 cmp r11, CONST cmp r11, CONST
26 cjmp LABEL27 cjmp LABEL27
27 cmp r11, CONST cmp r11, CONST
28 cjmp LABEL29 cjmp LABEL27
29 cmp r11, CONST cmp r11, CONST

19



Similarly, for each assembly file, we also use random deletion and random duplication of lines.

In each of these transformations, we leave the first 3 lines of header, as well as LABEL: lines

unaltered. Interestingly, using data augmented with NLP-inspired techniques makes the training

loss worse, which we discuss in the Results section of this work.

Original NLP(P=0.1) NLP(P=0.2) NLP(P=0.4)
Transformation Type
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Figure 2.4: NLP-style augmentation maintains function size distribution

For each assembly file, we end up with a total of 4 copies: the original file, as well as random

deletion, random duplication and random transpose variants. This means that after these NLP-

inspired transformations, the data set could be biased to favor larger assembly language functions.

However, while the shortest assembly functions are only a few lines long, which after the random

deletion transformation can indeed reduce their size by a non-negligible amount, the number of

such short functions is small. The width of each sub-plot in Figure 2.4 corresponds to the number

of samples with the number of lines in the file given by the y-axis. The distribution of function

sizes is unchanged by NLP-style augmentation, indicating the data set is not biased in terms of

function size.
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2.4 Results

Starting with a single libc.h source file, we apply 5 different transformations with Tigress to

obtain 5 obfuscated versions of libc.h. Next, we include this obfuscated source in each of 14

different test programs (one for each test function). Each of these programs is compiled with

diverse options:

• 5 optimization levels: O0, O1, O2, O3, Os

• 5 loop optimizations: unroll-loops, unroll-all-loops, unswitch-loops, loop-optimize,

strength-reduce

• 2 C standard versions: c99, gnu99

All of these different options are combined in a Cartesian product as shown in Algorithm 1, for

a total of 5 × 14 × 5 × 5 × 2 × 2 = 3500 different permutations from one source. An impor-

tant consideration when performing this type of data augmentation is that any bias present in the

original data will not necessarily be mitigated by the augmentation. This is analogous to image

augmentation for computer vision tasks - if the data set contains only images of cats, no amount

of augmentation will help the model recognize dogs. Likewise when augmenting source code via

obfuscation and diverse compilation, the semantics of the original source will be replicated in the

augmented versions.

Algorithm 1 Diverse compilation
1: for libc in headers do
2: for func in functions do
3: for opt in levels do
4: for loop in optimizations do
5: CC −opt −loop −std = std −include libc func.c
6: end for
7: end for
8: end for
9: end for

This method of adding diversity through both obfuscation and diverse compilation options is ex-
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tremely valuable for this type of source code analysis, because it is difficult to obtain enough

different implementations of the source material to satisfy the requirements of a machine learning

approach.

NLP
Plain

Figure 2.5: t-SNE of Plain and NLP-augmented data

As shown by Figure 2.5, adding NLP-style augmentation improves clustering performance when

used with t-distributed Stochastic Neighbor Embedding (t-SNE). Part of this is simply because

the NLP dataset contains 4x more samples (6044 versus 1511). However, the addition of NLP

augmentation increases the model’s generality and also allows for better discrimination of samples.

Figure 2.6 shows the t-SNE clustering of the augmented data. There are some clearly visible

clusters, especially for the free function.

We compare disassembled function embeddings using cosine similarity, in the same manner as

Ding et. al in their Asm2Vec work[13]. A major difference between our work and [13] is due to

our use of Tigress for obfuscating the C source code. Asm2Vec did apply obfuscation, but it was

performed on the intermediate representation of compiled code only, using obfuscator-llvm [26].

This work not only obfuscates the C source code, but further transforms the generated assembly
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Figure 2.7: t-SNE of NLP augmented data
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code using NLP-inspired techniques.

Generating diverse disassembly results in 6044 assembly files. Because each pairwise comparison

takes about 1 second on an 18-core x64 workstation, exhaustively comparing all (6044× 6044) pairs

would take over a year. Instead, we first generate all possible pairs and then sample with probability

P = 1/500. Finally, we take the average similarity of each pairing to generate Figure 2.8. Some

functions are more consistently similar, such as pow and exp or printf and fprintf. The

fact that the diagonal of this heatmap does not have consistently high values may be attributed the

low sampling rate. For example when row and column are both fgets or both free, we expect

the similarity to be very high but it is only moderately higher than average. The strtol function

is consistently dissimilar with all other functions.
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Figure 2.8: Mean function similarity

2.5 Conclusions and Future Work

This work demonstrates two contributions to the field of binary security analysis. First, we describe

a method of generating a large amount of data from a single binary source. Second, we show a
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novel application of data augmentation for binary code.

Word deletion, insertion, and transpositions are data augmentation techniques which previously

were used mostly for NLP. One possible enhancement of this work is to leverage models which

were trained on larger data, but in different domains. This method of transfer learning has proven

effective in NLP and other domains, where a model trained on a large data set can then be used

with good results on a smaller data set. The challenge for us in using transfer learning would be

to determine what existing large models are a good match for code analysis. As noted by Ding et.

al[13], natural language data is typically a 1-dimensional stream of tokens, whereas code contains

multiple 1-dimensional streams which are explicitly linked to form a graph. As noted by Bayer et.

al[10] a potential improvement to this work would leverage a larger pre-trained model. However,

a significant challenge of applying a pre-trained model is that most large models are trained on

natural language data rather than code, so it is unclear if this would be good or bad for code

analysis.

Existing state-of-the-art models in this domain primarily focus on binary clone detection [11],

[19], [27], [28]. These applications focus on finding exact or nearly-exact matches in order to

prove cases of intellectual property theft or to detect known malware. In the face of obfuscation,

the problem becomes much more difficult, because not only are exact binary matches much less

likely to occur, but approximate matches may also be rare. This work aims to quantify which types

of data augmentation are valid for code. One of our future goals is to build on this initial work and

determine which types of data augmentation work best for obfuscated code.

By treating disassembled tokens as words, NLP-based techniques can be applied to any binary

code for which a compatible disassembler exists (i.e. all major architectures). We find that NLP-

based augmentation of the disassembled code improves clustering performance for t-SNE, but has

worse loss characteristics during training.

This work examined only object files compiled for the x86_64 instruction set architecture (ISA).

Future work should determine how well these results transfer to other ISAs, especially ARM and

MIPS, although we anticipate that the technique should remain effective regardless of the ISA.
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Additional research is warranted to determine what types of NLP-based data augmentation works

best for assembly code. In this work, the types of changes we made were line-based, and finer-

grained changes within lines could also change operands in addition to opcodes.

Finally, this work uses only one type of machine learning model (Asm2Vec). Other NLP-based

models are likely also a good fit for the type of disassembly data we use in this work. We also

use only one set of Asm2Vec hyperparameters. This could be further expanded and optimized

by hyperparameter tuning to determine whether longer random walks (used for embedding) are

more beneficial. Additional graph embeddings are possible using the generalized jump and call

instructions in the disassembly code, and we plan to explore these types of embeddings and Graph

Neural Network applications in future works.
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CHAPTER 3

DETECTING STANDARD LIBRARY FUNCTIONS IN OBFUSCATED CODE

Binary analysis helps find low-level system bugs in embedded systems, middleware, and Internet

of Things (IoT) devices. However, obfuscation makes static analysis more challenging. In this

chapter, we use machine learning to detect standard library functions in compiled code which has

been heavily obfuscated. First we create a C library function dataset augmented by obfuscation and

diverse compiler options. We then train an ensemble of Paragraph Vector-Distributed Memory (PV-

DM) models on this dataset, and combine their predictions with simple majority voting. Although

the average accuracy of individual PV-DM classifiers is 68\Finally, we train a separate model on

the graph structure of the disassembled data. This graph classifier is 64% accurate on its own,

but does not improve accuracy when added to the ensemble. Unlike previous work, our approach

works even with heavy obfuscation, an advantage we attribute to increased diversity of our training

data and increased capacity of our ensemble model.

3.1 Introduction

Unlike dynamically linked applications which share library code with other applications, statically

linked binaries bring their own libraries. Static linking has multiple advantages. It makes appli-

cations convenient for users to install. It also gives software developers full control over library

code used by their application, and allows them to include patched libraries for custom extensions,

or older versions of libraries for backwards compatibility. However, this flexibility also means se-

curity researchers must examine statically linked library code once per application, whereas code

shared by dynamically linked applications only needs to be analyzed once per system.

Binary analysis techniques can detect malware in either dynamically or statically linked binary

files [29], [30], but malware authors consistently try to thwart such analysis. One method of

hiding malware is to strip1 symbols and replace meaningful names with less meaningful symbols or
1https://linux.die.net/man/1/strip
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numbers after compilation. Another method involves obfuscating source code before compilation.

Extensions to mainstream compilers like LLVM [31] provide obfuscation as a compilation option

[26], which makes distributing an obfuscated version of a binary no more difficult than distributing

one without obfuscation.

After years of progress by reverse engineers and security researchers, obfuscation is still a chal-

lenge for modern static analysis [32]–[34], and some forms are “provably hard for any static code

analyzer to overcome” [35]. Yet despite its shortcomings, static analysis remains valuable in part

due to its low cost to implement. Because it never executes potentially malicious code, static anal-

ysis requires no special run-time environment. This contrasts with dynamic [36] or hybrid [37]

analysis types which require isolated test environments and are therefore more costly.

In this work, we propose a static analysis approach to classify known functions in obfuscated

and stripped binaries. Our method uses a general purpose machine learning model on a dataset

prepared using domain-specific knowledge and tools, and attains accuracy up to 74%. Meanwhile,

previous state of the art approaches like Asm2Vec [13] perform well on binary code whose sources

were not obfuscated, but poorly when sources were heavily obfuscated.

Research Summary: Our method is robust to source obfuscation, which represents an improve-

ment over previous approaches. To demonstrate this technique, we classify C standard library

functions. Even though such functions are typically compact in their source code representation,

they appear frequently in real programs, and IDA Pro’s FLIRT [38] plugin demonstrates that there

is commercial demand for this task. Unfortunately, malware authors can circumvent analysis by

spoofing FLIRT signatures [39], which limits the utility of FLIRT as an analysis tool.

Our model-based approach is not susceptible to this type of spoofing attack because it does not

rely on precisely matching signatures of function data, representing an improvement which could

be useful in commercial security analysis products. The goal of this research is to improve the

effectiveness of static binary analysis by reliably detecting known functions within an unknown

binary. This lets security researchers spend more time dissecting unknown functions. Ultimately,

our goal with this work is to improve the speed and quality of the practice of binary analysis.
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The remaining sections of this paper are as follows: First, a Related Work section summarizes the

state of the art in this domain and outlines some limitations of those approaches. Next, we describe

in a Methods section the details of our approach. A subsequent Discussion section provides detail

on our experimental approach and its limitations. After this, a Results section illustrates how our

approach fares in our experiments. Finally, we detail our Conclusions and Future Work to reflect

on the merits of our approach and what enhancements may exist for this approach.

3.2 Related Work

An important inspiration for our work is a technique called asm2vec [13]. The Asm2Vec model

takes inspiration from Word2Vec [14], which in turn uses a Paragraph Vector - Distributed Mem-

ory (PV-DM) technique [15]. PV-DM is usually applied to natural language processing (NLP), but

asm2vec shows it is feasible to treat assembly code as “words” for such a model. Like asm2vec

and InnerEye [40], we disassemble the binary and tokenize the resulting assembly code, but our

preprocessing step preserves the distinct labels. However, current related work either is not specif-

ically focused on finding library functions, or did not consider obfuscated source material. We use

an obfuscated training corpus, which allows our model to classify heavily obfuscated functions that

were impossible for approaches like asm2vec. Our approach attempts to fill the gap in the current

research by focusing on library function detection while tolerating a high degree of obfuscation.

In addition, instead of discriminating between malware and non-malware, our approach aims to

classify individual functions. Table 3.1 summarizes some of the state-of-the-art approaches in re-

lation to ours. In this table, the term Obfuscation Tolerance means the method performed to a high

standard on obfuscated code.

Recently, Yu et. al [43] explore augmenting source code by semantics-preserving transforms.

However, their work explicitly tries to preserve the meaning and readability of the source code,

not obfuscate it. In [45], Mi et. al use transformations such as variable renaming and modifying

commentary to produce augmented variants of source code in order to classify the code as readable

or not. Modifying source code comments has no affect on its run-time semantics, but renaming
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Table 3.1: Comparison of Current Approaches

Method Purpose Obfuscation Tolerance
Asm2Vec [13] malware detection, function similarity limited
InnerEye [40] cross architecture basic block similarity unknown
E Unibus Pluram [41] defensive obfuscation yes
AlphaDiff [28] cross-version similarity no
Structure2Vec [42] scalable data representation unknown
Catak et. al [7] malware detection unknown
Yu et. al [43] data augmentation unknown
Marastoni et. al [11] binary similarity yes
FLIRT [38] library function detection no
Qiu et. al [44] library function detection unknown
Ours library function detection yes

variables would be considered a trivial or minor form of obfuscation.

Franz et. al suggest diverse compilation as a defensive technique in their 2010 paper [41]. They

propose generating semantically equivalent but syntactically different versions of a program such

that each user receives a unique version of the same program, thus limiting the scope of any specific

attack or vulnerability exploit.

Because malware detection is a common goal in this domain, researchers commonly employ a

Siamese network [28], [42] to train a loss function to determine which files are malware. While

effective for classifying a given binary file as either malicious or benign, this approach is less

suitable for recognizing specific subroutines or functions.

Data augmentation is often used for text classification as in [10]. Catak et. al [7] used data aug-

mentation for malware detection, by injecting random noise into their data samples. Marastoni et.

al reshaped 1-dimensional binary files into two-dimensional images, in order to use Convolution

Neural Network (CNN) techniques [11] originally developed for computer vision applications.

Qiu et. al define library functions as those whose “instruction sequence and semantics are known”.

They also point out the value in identifying these types of functions because analyzing them would

be a waste of time [44]. Their technique relies on constructing what they term an “execution

dependence graph” in order to capture the semantics of the analyzed code.

Finally, graph reduction techniques have seen recent use [46] to train graph neural networks more
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efficiently. This approach shrinks the overall size of the graphs while retaining some of their char-

acteristics, such as relative ordering of nodes or average out-degree. Alternative graph reduction

techniques exist such as [47] which preserve spectral properties of the graph. These reduction tech-

niques have the potential to enhance our work by enabling faster comparisons on simpler graphs.

Embedding techniques such as GraphSAGE [48] allow more efficient low-dimensional embed-

dings of large amounts of graph data. This technique may prove useful as our data sizes increase.

DeepWalk [49] is a method for embedding graph data in a lower-dimensional vector space that is

particularly effective when labeled data is sparse. Our use case also deals with sparse labeled data,

so this type of embedding method is potentially useful when preparing our dataset.

3.3 Methods

Data augmentation techniques from computer vision and natural language processing do not nec-

essarily apply to binary code, because even small changes to the code can result in unrelated

semantics or invalid code. By using obfuscation and diverse compiler options, we can generate

alternative versions of a given function without dramatically changing its semantics. We use the

obfuscation tool Tigress [17], [50] and the gcc compiler2. Initially we select at random a set of

functions from the musl C standard library3. However, some newer C language features used by

the musl authors are not supported by the older C parser used by Tigress.

Table 3.2: Functions of interest (compatible with Tigress)

abs acos asin atan2 ceil cos daemon
exp floor fread inet_addr inet_aton isalnum kill
memccpy memcmp memmem readdir signal sin stpcpy
stpncpy strchr strcpy strncpy strstr strtok tan
vfprintf wait4 waitpid

Table 3.2 shows the 31 remaining compatible functions. We then derive multiple new C sources

from each function using Tigress and different compiler options.

2https://gcc.gnu.org/
3https://musl.libc.org
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3.3.1 Data Augmentation Through Obfuscation

For this work, we use Tigress to augment both the size and diversity of our dataset. Given the

source code for a C library function such as abs (Figure 3.1), we transform the source code file

into approximately 345 new source code files, each based on different combinations of Tigress

transformations and compiler options.

int abs(int a) {

return a>0 ? a : -a;

}

Figure 3.1: C source code for abs function

Figure 3.2 compares and contrasts different some of the types of obfuscation. First we show the

normalized assembly code for abs without obfuscation. Next is abs obfuscated with the Split

transformation, which splits a single function into multiple parts. Finally we show abs obfuscated

with both EncodeArithmetic and Flatten transformations. This demonstrates the diversity

provided by obfuscation, allowing even a short function like abs to be effectively augmented.

1 endbr64
2 mov eax , edi
3 neg eax
4 cmovs eax , edi
5 ret

No obfuscation

1 endbr64
2 mov eax , edi
3 cdq
4 mov ecx , edx
5 xor ecx , edi
6 sub edx , ecx
7 xor edx , edi
8 cjmp LABEL7
9 neg eax

10 LABEL7:
11 ret

EncodeArithmetic, Flatten

1 endbr64
2 sub rsp , CONST
3 mov dword [rsp + CONST ], edi
4 test edi , edi
5 cjmp LABEL4
6 lea rsi , [rsp + CONST ]
7 lea rdi , [rsp + CONST ]
8 call LABEL7
9 LABEL7:

10 jmp LABEL8
11 LABEL4:
12 mov eax , edi
13 neg eax
14 mov dword [rsp + CONST ], eax
15 LABEL8:
16 move eax , dword [rsp + CONST ]
17 add rsp , CONST
18 ret

Split

Figure 3.2: Selected abs assembly code variations

Because Tigress is a source-to-source transformer, it permits sequential transformations for even

greater diversity. Some obfuscation types are more relevant for intentional obfuscation than oth-
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ers, particularly those which are proven to be NP-complete such as the control flow alterations

described by [51]. One malicious obfuscation technique hides itself from IDA Pro’s FLIRT func-

tion detector [39]. In this attack, malware authors construct malicious code which matches one of

FLIRT’s library function signatures, causing FLIRT to mark the malicious code as benign. The

existence of this attack demonstrates a vulnerability of signature-based static analysis. Basic ob-

fuscation such as encoding literal values or inserting no-op codes are easier for traditional static

analysis than more advanced obfuscation which alters control flow.

All Tigress transformations we use preserve enough of the original semantics such that the code

compiles without errors or warnings. However, the resulting binary file may not exactly match the

original semantics, especially in terms of performance. Despite these slight differences, obfusca-

tion is a more realistic form of data augmentation than inserting random noise into the binary file

as in [7]. We choose combinations of the following Tigress transformations4: (Flatten, Split, En-

codeArithmetic, Virtualize, AntiAliasAnalysis, EncodeLiterals, InitEntropy, InitOpaque). These

transformations cover a spectrum from “basic” to “advanced” obfuscation types. EncodeArith-

metic and EncodeLiterals are “basic” transforms which do not disrupt control flow. Split, Flatten,

and Virtualize are more “advanced” transforms that do affect control flow and are traditionally

pose a challenge for static analysis.

Our work uses each of these transformations individually to produce one set of outputs, and then

produces further outputs by forming sequences of up to three transforms. Some example sequences

of transforms include:

• (EncodeLiterals → EncodeLiterals → Flatten)

• (Flatten → Virtualize → AntiAliasAnalysis)

• (Virtualize → Flatten)

• (Flatten → AntiAliasAnalysis → Flatten)

• (Split → Split → Split)
4https://tigress.wtf/transformations.html
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In addition to obfuscation, we also use compiler options to add diversity. We keep all compiler

options originally used by musl, and add more of our own to obtain additional binary files. We

collect groups of these options and apply an entire group during compilation:

Loops -floop-parallelize-all, -ftree-loop-if-convert, -funroll-all-loops, -fsplit-loops, -funswitch-

loops

Codegen -fstack-reuseall, -ftrapv, -fpcc-struct-return, -fcommon, -fpic, -fpie

Safety -fsanitizeaddress, -fsanitizepointer-compare, -fsanitizeundefined, -fsanitize-address-use-

after-scope

Optimize -O3 (overrides -02 default value)

Each Tigress transformation is then compiled with one of these option groups at most, resulting in

permutations of Tigress transforms and option group values such as (AntiAliasAnalysis → Virtual-

ize → Flatten → Loops) and (Virtualize → EncodeArithmetic → Split → Optimize). This results

in 1290 different combinations of transformations and options, 358 of which result in syntactically

valid C code for at least some of our functions. We then discard any C code generated by Tigress

which fails to compile. Finally, we apply each combination to each of our functions of interest,

resulting in a total training set size of 9414 object files.

3.3.2 Data Preprocessing

For each compiled object file, we must transform it into a format usable by our models. This entails

disassembling the object file into assembly code. This assembly code is further normalized by re-

moving header information, replacing numeric values with a single token (CONST), and renaming

all numeric offsets as generic labels, such as LABEL5 or LABEL194. These two steps serve to

strip the code of any identifying information, similar to using a linker’s “strip symbols” option or

the strip command 1.

The sections punctuated by LABEL: tokens are basic blocks, essentially linear sequences of in-

structions. If we again refer to the Split assembly code from Figure 3.2, we can describe its
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graph structure as in Figure 3.3.

0

LABEL4

LABEL7 LABEL8

Figure 3.3: Graph representation of Split

The majority of this normalization step is provided by an open source implementation of asm2vec

available from GitHub [24]. This assembly representation has replaced numeric offsets with

LABEL<N> keywords, where N is a relative offset within the given file. There are also 3 lines of

header at the beginning (.name sym.abs, .offset 00000000800004e, .file abs.o)

in the original assembly output file. These lines identify the function explicitly, so we remove them

from both our training and testing datasets, and they are not shown in the examples used here for

clarity. Finally, we separate all tokens by whitespace and remove newlines, so the resulting docu-

ment is a single line, part of which is shown in Figure 3.4.

endbr64 sub rsp , CONST mov dword [rsp + CONST] , edi test

Figure 3.4: Normalized assembly tokens

Each assembly file is now a single line of space-separated tokens, which we then combine into

one multi-line corpus text file. This file contains neither function identifiers nor absolute numeric

offsets, so we consider it equivalent to a stripped binary file. The corpus used in this work en-

codes 9414 documents in just 31MB - comparable in size to approximately 10 photos from a high

resolution smartphone camera. We mention the size of this dataset to illustrate that even this un-

compressed plain text encoding is “small data” by today’s standards, and this suggests that much

larger training data sizes (1-2 orders of magnitude larger) are feasible for future work without

requiring any change to the approach.
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To measure the performance of our unsupervised model, we also store the name (label) of each

function in a separate file, with one function name per line. The line containing the function name

is the same line at which the corresponding function’s tokens appear in the corpus. We later use this

correspondence to validate the accuracy of the model, but because this is an unsupervised model,

at no point in training or testing is the model exposed to these labels.

3.3.3 PV-DM Voting Classifier

We use Gensim’s “Doc2Vec” implementation of PV-DM 5. PV-DM contrasts with the Distributed

Bag of Words (DBOW) approach by accounting for the order in which the words occur. This

model aims to maximize the average log probability that word wt appears in a sequence of training

words w1, w2, ..., wT within a window of size T using the objective function in Equation 3.1:

1

T

T−k∑
t=k

log P (wt|wt−k, ..., wt+k) (3.1)

The hyperparameters for this PV-DM model are: embedding size: 400, window size: 10, min

count: 10, epochs: 40. These are approximately the same as those recommended by [15]. How-

ever, we use 40 epochs instead of the recommended 10 due to our smaller training dataset. After

training this model using a shuffled 10-fold cross validation split, discrete assembly language to-

kens are embedded into a lower dimensional vector space.

To visualize this embedding, we plot the first two principal components as shown in Figure 3.5.

We annotate a subset with the token’s name, to illustrate which tokens occupy similar regions of

the embedding. Tokens in the LABEL category are not annotated, to avoid cluttering the visual.

The most interesting aspect of this visualization is that labels (in orange) cluster near one another.

3.3.4 Graph Metadata Classifier

While the PV-DM model alone is capable of approximating some assembly language semantics,

assembly code also contains graph structure, which models might use to more accurately classify

5https://radimrehurek.com/gensim/models/doc2vec.html
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mov rip
r14

edi
inc

or
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r12d

xmm2
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setlcsaxbxmovdqu

non-label token
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Figure 3.5: First 2 principal components of Word2Vec embedding (with labels)

functions. This graph structure is due instructions like jump or call making directed edges

which terminate at labels. We partition sequences of tokens into nodes by splitting at every

LABEL<N>: type token. This simplistic partitioning is coarser than a control flow graph because

it ignores conditional jumps. Some types of obfuscation, such as Tigress’ EncodeLiterals

transformation, have minimal or no effect on this graph structure. Others, such as Flatten and

Split, explicitly add or remove control flow, resulting in changes to the graph structure.

We reduce the complexity of these graphs using standard graph algorithms: graph condensation

and minimum spanning tree, with implementations provided by the graph-tool software6. Graph

condensation combines nodes if they form a strongly connected component and allows us to prune

duplicate edges. For obfuscated code graphs, reducing the complexity in this way may approxi-

mate the shape of graph of the function before obfuscation. In practice, the reduced graph is not

necessarily isomorphic to the original, and because these graphs only represent the structure of the

code, they can not be checked for validity.

Figure 3.6 shows the effect of reducing an obfuscated graph using standard graph techniques. In

each sub-figure, we show an example graph with node sizes weighted by the number of tokens

present in the original basic block, and edge thickness proportional to the graph’s betweenness

6https://graph-tool.skewed.de/
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a b

c d

Figure 3.6: Graph reduction. (a) shows the original graph; (b) condenses strongly connected
components and self-loops as per [52]; (c) condenses as in (b) and also prunes edges which are
not part of the minimum spanning tree; (d) applies (c) twice. Each view preserves the relative
positioning from the original graph, scaled to fit the new graph.
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centrality. Repeated application of graph condensation and filtering by the minimum spanning tree

provides an extreme reduction in the graph’s complexity.

We select an arbitrary set of graph properties as a feature vector (average edge betweenness,

average vertex size, vertex degree histogram, and vertex degree normalized by vertex size) and

then train a random forest classifier to predict the class of the function based on this vector. For

each of these properties, our feature vector consists of its mean and its standard deviation, for a

total of 8 features per graph.

3.4 Discussion

Unlike related work in this area which may involve obfuscated source code, our approach focuses

specifically on the identifying library functions. While these functions are often small, they are

used frequently in application code by both benign and malicious developers. Identifying library

functions quickly and accurately aids in the overall task of binary analysis, because once those

functions are identified, analysis can proceed to the more interesting aspects of a particular section

of code, such as finding malware or stolen intellectual property.

In the case where binary code is dynamically linked with system libraries, our method has little

to offer, because those libraries can be analyzed just one time even if there are many dynamically

linked applications that use them. However, if desired our approach could be used to analyze an

existing library. If such analysis reveals an unknown function, this could imply a library function

missing from our model’s dataset, or possibly a library function which is implemented in an un-

usual manner. It is reasonable to audit shared library code closely, because a vulnerability in a

shared resource impacts many other applications.

Unlike related work which uses data augmentation techniques inspired by computer vision [7],

[11], our method attempts to preserve the semantics of the source material. Automated obfuscation

using a tool like Tigress [17], [50] is repeatable and testable, permitting verification of program

semantics both before and after transformation. However, in this work we do not run any behavioral

tests of the code either before or after obfuscation, instead we rely on the less strict measure of
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compilation success. We only include in our method those transformations that result in source

code that can compile without any errors.

One hypothesis which we examine in this work is whether graph metadata affects the outcome of a

machine learning model. Compared to PV-DM models, graph-based models convey relationships

between parts explicitly and succinctly. Therefore, we expect that the addition of graph attributes to

a model should improve its accuracy at the cost of increased complexity during data preprocessing,

because obtaining these graph characteristics requires more domain knowledge of the assembly

code.

3.5 Results

Table 3.3: Individual model accuracy on test set

model 0 1 2 3 4 5 6 7 8 9 mean

correct
total

0.68 0.68 0.65 0.69 0.69 0.68 0.7 0.69 0.68 0.69 0.68

Table 3.3 summarizes the accuracy of each of the individual classifiers. To measure accuracy, we

take a simple count of all correct predictions, and divide by the total number of predictions. Each

of the 10 models is 68% accurate on average. But because each of the 10 sub-models trained on a

different 90% of the original corpus, voters strong in one area can compensate for other voters weak

in that area. During experimental evaluation, this enabled the model to achieve 100% accuracy on

a set of test samples which were withheld from the training set.

While high accuracy on a training sample is encouraging, a more realistic measure of voting clas-

sifier accuracy is predicting the correct class for a new function implementation which was never

seen in either training or testing. To test this, we generate a small dataset with a different set

of Tigress transformations (Split then Flatten) and compilation options (-O2). While the

functions themselves are still from musl, these compiled binaries are new to our models.

Table 3.4 shows the results for these new function implementations. The simple accuracy of the

voting ensemble for unseen data is 74%, and Cohen’s kappa coefficient [53] is 0.73. In this table,
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Table 3.4: Classifier results: new data

actual voting prediction (74%) graph prediction (64%) graph override (74%)
abs abs abs abs
acos inet_addr abs abs
asin acos asin asin
atan2 atan2 strtok atan2
ceil floor ceil floor
cos sin asin asin
daemon daemon abs daemon
exp sin tan sin
floor floor floor floor
fread fread fread fread
inet_addr inet_addr inet_addr inet_addr
inet_aton inet_aton inet_aton inet_aton
isalnum isalnum isalnum isalnum
kill kill kill kill
memccpy memccpy strstr memccpy
memcmp memcmp memcmp memcmp
memmem memmem memmem memmem
readdir readdir readdir readdir
signal signal signal signal
sin sin asin asin
stpcpy strncpy inet_aton strncpy
stpncpy stpncpy stpncpy stpncpy
strchr strchr strchr strchr
strcpy strncpy strcpy strncpy
strncpy strncpy strchr strncpy
strstr strstr strstr strstr
strtok strtok strtok strtok
tan tan memcmp tan
vfprintf acos asin acos
wait4 wait4 wait4 wait4
waitpid waitpid waitpid waitpid
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correct predictions by the classifiers are in bold face. Figure 3.7 shows the predicted versus actual

label for the test set (10% of total) using a Random Forest classifier on the graph metadata. The

overall accuracy of this classifier using the original graph structure is 64%. However, we still

see 64% accuracy with this model when analyzing the reduced graph data. Reducing the graph

structure using the methods of Figure 3.6 has no impact on accuracy, but uses less memory. As

datasets grow larger, this reduction technique may become essential.
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Figure 3.7: Confusion matrix for graph metadata classifier (validation data)

The graph metadata classifier accuracy is still acceptable at 67% when presented with unseen test

data. Figure 3.8 shows predicted versus actual labels for this small test dataset. We combine

these two classifiers by overriding the voted prediction with the graph prediction when the voting

classifier was “uncertain”, based on a simple heuristic (more than 4 different votes and the winner

received less than 5 votes). With this simple heuristic, the combined voting/graph classifier remains

74% accurate. Contrary to our expectations, the addition of this graph metadata did not improve

the overall quality of result.

Compared to asm2vec, our work succeeds at classifying highly obfuscated code, as illustrated in

Table 3.5.
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Figure 3.8: Confusion matrix for graph metadata classifier (test data)

Table 3.5: Comparison with Asm2Vec

EncodeLiterals Virtualization JIT 3 transformations
Asm2Vec 92.7% 35% 45% 0%
ours 74% 74% untested 74%
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3.6 Conclusions and Future Work

We demonstrate source code augmentation through obfuscation suitable for training different types

of machine learning models. Our voting classifier model classifies new variations of given func-

tions with 74% accuracy, whereas a graph-metadata based classifier classifies this same test data

with 64% accuracy. Combining the predictions of both classifiers with a simple voting heuristic

neither improves nor degrades this 74% accuracy. This approach tolerates obfuscated source code

and stripped binary files, unlike asm2vec, whose authors note that “after applying three obfusca-

tion techniques at the same time, asm2vec can no longer recover any clone”. Our approach can not

only discriminate between similar versus dissimilar samples, but also classifies multiple functions

with accuracy exceeding that of asm2vec when the functions were subject to obfuscation.

1 endbr64
2 push r13
3 mov eax , CONST
4 push r12
5 push rbp
6 lea rbp , [rip ]
7 push rbx
8 sub rsp , CONST
9 movsd qword [rsp + CONST ], xmm0

10 lea r13 , [rsp + CONST ]
11 lea r12 , [rsp + CONST ]
12 LABEL12:
13 cmp rax , CONST
14 cjmp LABEL12
15 movsxd rdx , dword [rbp + rax *CONST ]
16 add rdx , rbp
17 jmp rdx
18 ret

acos (actual)

1 endbr64
2 mov qword [rsp + CONST ], rdi
3 lea rdx , [rsp + CONST ]
4 lea rsi , [rsp + CONST ]
5 lea rdi , [rsp + CONST ]
6 call LABEL6
7 LABEL6:
8 move eax , dword [rsp + CONST ]
9 test eax , eax

10 cjmp LABEL9
11 move eax , dword [rsp + CONST ]
12 add rsp , CONST
13 ret
14 LABEL9:
15 mov eax , CONST
16 add rsp , CONST

inet_addr (predicted)

Figure 3.9: Mistaken function example

Our approach has some limitations, however, and there is room for improvement. Not all Ti-

gress transformations were successful in producing output, a problem also encountered by the

asm2vec authors. We were able to work around some of these errors by carefully crafting the

commands passed to the compiler, but some such errors remain. These are due to the musl li-

brary’s usage of newer C syntax features not yet supported by Tigress’ C parsing engine. In these
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cases, a particular function was not transformed by a particular Tigress transformation, and so that

function-transformation pair was not included in our dataset. Manual fixes limit the generality of

this approach because they require familiarity with the build system. This is not a problem for

in-house analysis, but it could be a challenge for analyzing unknown code.

We also note that there are some examples in the unseen data which our voting classifier never

guessed correctly (e.g. vfprintf, acos, and strcpy). With the strcpy sample, the clas-

sifier predicted strncpy(6) stpcpy(3) stpncpy. We believe these predictions are good

approximate matches to the strcpy function, and would therefore be valuable to a human us-

ing our approach as a reverse engineering aid. The predictions for vfprintf (asin(5) and

acos(5)) are not close at all, and would be misleading to a human. This instance of vfprintf

happens to contain no labels or jumps, which could indicate a limitation of our data augmentation

strategy. The acos example was mistaken for inet_addr, so we compare them side-by-side in

Figure 3.9. These two samples do not have any major similarities other than length, so more analy-

sis is needed to determine how the model can better handle situations like these. Figure 3.10 shows

the distribution of basic blocks in our data before and after the graph condensation and pruning.

This distribution is acceptable for analysis, because such skew is likely to occur in real-world code

as well as synthesized code, even though library functions in particular tend to have fewer nodes

and edges.

In future work we plan to evaluate the effectiveness of graph coarsening in contrast to the simpler

graph reduction we applied in this work. Coarsening methods such as these preserve spectral prop-

erties of the original graphs, unlike our minimum spanning tree and condensation approach, and

may better preserve the structure of small graphs. We also plan to incorporate graph embedding

and recent graph neural network techniques to increase the effectiveness of our classifiers. Finally,

while the workflow we developed so far is useful for detecting specific functions within an obfus-

cated binary, we plan to further analyze whether it can distinguish between functions it has never

seen in any form versus functions it has seen in a modified form.
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CHAPTER 4

FUNCTION CLASSIFICATION FOR OBFUSCATED BINARY CODE

Modern software builds on a foundation of opaque binary code, which makes analysis difficult.

Inside this code there may be vulnerabilities or stolen intellectual property, so effective analysis

tools are an essential part of forensic software analysis and reverse engineering. With sufficient

quantities of the right kind of data, machine learning models could help find these vulnerabilities,

but obtaining sufficient training data remains a stubborn challenge. In this chapter, we propose

a novel approach to data augmentation which effectively addresses the data shortage problem.

We augment data using obfuscation for source code, diverse compilation for binary code, and by

extracting basic blocks and sampling random walks through their resulting control flow graphs.

These forms of augmentation not only make our approach robust to obfuscation but also enable us

to use simpler classifiers. We evaluate multiple models which use different representations of the

same data to compare and contrast what forms of data augmentation work best in different scenar-

ios. Finally, this chapter concludes with an application for real-world program analysis by using

a model to detect known functions within utility programs as well as malware This application

demonstrates how our work can improve productivity for the reverse engineering practitioner.

4.1 Introduction

The problem of determining similarities between two different programs is, in general, unsolvable.

Even answering the question “does this program halt?” is beyond the reach of current theory. How-

ever, by relaxing the question ever so slightly, we arrive at an approach that is not only tractable,

but useful. We train machine learning models to recognize a known set of functions, then evaluate

unknown code based on its similarity to one of the known functions. This reduces the scope of

our problem from the unsolvable “what is the meaning of unknown code X?” to the tractable “how

similar is unknown code X to known code Y?” Answering this question with machine learning
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requires all of: (a) sufficient data, (b) a model to train, and (c) some metric by which to judge

binary similarity; this work addresses all of these points.

In recent decades, machine learning has undergone a revolution, with new techniques driving ad-

vances in natural language processing (NLP), computer vision (CV) and other domains. Many of

these advances rely on massive datasets for training. However, when it comes to analyzing com-

piled code, lack of data remains a serious problem. While there have been attempts [54], [55] to

aggregate malware samples and compiled binary program data, suitable sources for the most part

remain fragmented.

In this work, we apply machine learning to detect known functions within obfuscated and stripped

binary code. This is relevant for tasks ranging from malware detection to intellectual property

protection. Despite the scarcity of real-world training data and the unique properties of compiled

binary data, we show that it is possible to train high quality models on consumer-grade hardware

quickly. In contrast to approaches such as [38], [56] is that rather than detecting known patterns of

code, we are interested in detection of code that is similar but not identical to known code.

To obtain sufficiently large quantities of training data, we propose a method of data augmentation

based on source code obfuscation and diverse compilation. Through additional domain-specific

feature engineering, we generate a large number of example data while preserving the unique

structural characteristics of compiled code.

We provide different models each requiring varying degrees of data preprocessing, and evaluate

them all on the same data to contrast their strengths and weaknesses.

For determining function similarity, modern reverse engineering tools are typically limited by their

reliance on heuristics [57], assumptions about instruction set architecture, or avoidance of obfus-

cated code. We focus on what we consider to be the most difficult case: intensely obfuscated

binary code that has been stripped of all symbols. In this work we focus on the x86-64 instruction

set architecture (ISA), but the same technique applies to any architecture for which a disassembler

exists. The similarity metric differs slightly for each of our models, but all are based on the same

premise: train on a diverse set of representative samples to learn to classify the implicit rather than

48



explicit patterns in the data.

The contributions of this paper are as follows. First, we describe obfuscation-based data augmenta-

tion which retains essential syntactic and semantic features of compiled code. Second, we measure

the utility of adding domain-specific engineered features to our baseline approach. Finally, we con-

duct a case study applying these techniques to locate known functions within stripped real-world

binary programs.

4.1.1 Related work

Traditional approaches to binary analysis relied heavily on feature engineering, applied domain

knowledge, and carefully crafted heuristics. Detecting known sequences of bytes within a binary

is sufficient insight for certain applications. When the content of the functions of interest is static,

fixed pattern matching as in [56] can help detect known functions. The reverse engineering soft-

ware IDA Pro has a plugin called FLIRT [38] that builds on this approach. FLIRT uses a database

of known function “fingerprints” and searches for matching fingerprints within the analyzed code.

Unfortunately, this fingerprinting approach can be spoofed by an adversary [39]. By assuming

the binary is being analyzed in IDA, the attacker constructs fake fingerprints that are identified by

FLIRT as benign. However, these fake fingerprints hide malicious code. IDA is a market leader

in reverse engineering software, so IDA-specific attacks are worthwhile to an attacker, however

fingerprint-based matching from any vendor is inherently vulnerable to this type of attack.

More recent deep learning and embedding learning methods for binary analysis still rely on as-

sumptions about the input data that are not universally true. Asm2Vec [13] achieves good results

for plain code but relies on the presence of debug symbols in the code. The accuracy of Asm2Vec

is highest in the case of analyzing non-obfuscated code, but deteriorates when applied to code with

increased amounts of obfuscation. Gemini [58] tolerates differences between instruction set archi-

tectures, but depends on control flow graph (CFG) similarity, making it less useful in the presence

of obfuscation techniques which alter the program’s CFG. Nero [59] uses augmented call sites to

predict names of the called procedures, and [60] uses a method of encoding the abstract syntax
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tree in a way that can be learned by a long short-term memory (LSTM) network. Massarelli et al.

employ a token embedding model using the word2vec [14] methods and suggest the use of self-

attention [61] as in [62] improves over the results of Gemini. They test on non-obfuscated binary

data only. Likewise, [63] focuses on learning an assembly language model based on instruction

embeddings. All these approaches start by building vector embeddings of their input. Embeddings

are good for analyzing obfuscated code because minor variations between similar examples may

end up nearby in the embedding space. However, it is important to note that this robustness is

highly dependent on the diversity of training data.

Graph machine learning methods help predict relationships among entities in irregularly-shaped

data such as social networks, road networks, or molecular structures [64], but are difficult to run

efficiently. Marcelli et al. suggest that graph-based neural networks (GNNs) are better at func-

tion similarity than simpler fuzzy hashing approaches [54], and suggest combining GNN-based

approaches with instruction-level encoders. Some embedding methods, such as [13], [23], [58]

rely on extracting CFG information from the binary, typically by relying on reverse engineering

software such as IDA Pro [65].

In their survey, Haq et al. [55] identify different binary code similarity approaches. They find

that most approaches benefit by using vector representations, and a majority of papers focus on

one-to-many comparisons. A characteristic shared by several approaches in this survey is that the

datasets used tend to either focus on cross-language/cross-architecture similarity (as in [60]), or

malware/benign binary classification problems.

The work of Jin et al. is closely aligned to our problem [66]. Their SymLM model aims to

predict the name of a function given stripped binary input data. SymLM improves on previous

work by David et al. [59], which predicts symbol names from stripped binaries. The improvement

of SymLM is due to the inclusion of execution-aware metadata, which results in a more complex

model architecture. They also train on a large number of functions across 16,027 different binaries,

but with only four obfuscation options.

Pei et al. build on SymLM with their work, SymC [67]. They demonstrate improvements over
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SymLM using a model that preserves symmetries based on a group theoretic representation of

instructions. SymC tests the same four obfuscation options as SymLM.

A binary analysis task related to obfuscation is the control flow transformation work by Yakdan et

al. [68]. This could be one step serving a larger de-obfuscation task.

Yu et al. [69] propose a model that combines embeddings in the instruction, block, and graph

level. They represent the CFG as an adjacency matrix add an Convolutional Neural Network

(CNN) alongside BERT [70] which considers token and block embeddings. By merging the out-

puts of these two models, they are able to consider features at different hierarchical layers. Their

evaluation task is binary similarity at two different optimization levels (-O2 and -O3) and across

two architectures (x86-64 and ARM), and does not include any tasks related to obfuscation. An-

other work which utilizes an embedding followed by a deep neural network is described in [71,

Chap. 4]. This work achieves around 86% accuracy in distinguishing 12 function classes in a test

set of 1000 samples, after training on 10800 samples.

4.1.2 Research questions

What makes a model robust to obfuscation?

The landscape of related works is fragmented by a diversity of approaches and a diversity of dif-

ferent datasets. Some focus solely on malware, others on plagiarism detections, and still others on

cross-architecture similarity. While some datasets include a small amount of slightly obfuscated

code, ours focuses on obfuscation as the primary mode of data augmentation. We also use more

severely obfuscated code by composing multiple obfuscation types in a single datum.

Does training on obfuscated code improve predictions on non-obfuscated code?

When considering the predictive strength of a model M(train, test) with a full set of obfuscated

code o, a subset of the obfuscated code s or plain code p, so we consider the combinations in Table

4.1

We consider scenario 3 the most challenging from an analysis perspective but also representative
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Table 4.1: Train and test combinations

Train Dataset Test Dataset
Obfuscated Obfuscated
Obfuscated Plain
Plain Obfuscated
Plain Plain
Subset+Plain Obfuscated
Subset+Plain Plain

of an important threat model. In this threat model, a dedicated attacker has obfuscated their code,

but the under-prepared defender only has the plain code for comparison. Likewise scenario 2 cor-

responds to a well-prepared defender with a corpus of obfuscated training data versus a lax attacker

using no obfuscation at all. Scenarios 1 and 4 indirectly illustrate the effects of adding obfuscation

to the dataset. In our experiments, we found that obfuscation tools do not necessarily work with

every possible function. Scenarios 5 and 6 are most relevant for this kind of situation because they

represent a dataset which is only partially augmented with obfuscated training examples.

How does graph representation impact model performance?

Finally, we use assembly language’s basic block graph structure to synthesize a representation

that reflects the binary program’s control flow to add some of the runtime semantics to our static

analysis approach. We evaluate the same models on this representation to determine how this graph

structure affects model performance.

4.2 Methods

4.2.1 Dataset

A key challenge when applying deep learning models to any problem is obtaining sufficient quan-

tity of high-quality data. For compiled binary programs, there are typically only a handful of

different versions to choose from. These different versions generally only exist in order to support

the most common three or four operating systems, and such a small number of versions is insuffi-
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Figure 4.1: Dataset generation stages

cient for training a deep learning model. We address this shortage of binary data through the use

of obfuscation, diverse compilation, and feature engineering to augment existing data [72].

Figure 4.1 summarizes the construction of our dataset. Our approach begins with the source code

from a set of functions of interest corresponding to Figure 4.1 (A). We use 25 functions from

the open source musl1 C library implementation (version 1.2.4) as our running example. Some

functions are conceptually related, such as the pair (floor, ceil), the assorted trigonometric

functions (acos, atan2, sin, tan, . . . ), and the string related functions (strchr, strcpy,

strtok, . . . ). Others such as daemon and inet_aton are not obviously similar to any of the

others. Figure 4.1 only shows two example functions for clarity.

To transform these sources into Figure 4.1 (B), we first obfuscate the source code of these functions

using a number of the following Tigress2 transformations:

• Plain: no obfuscation
1The musl C library: https://musl.libc.org/
2Tigress C Obfuscator: https://tigress.wtf/
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• Flatten: replace control flow with a jump table or switch statement

• Split: break up a function into multiple parts

• EncodeArithmetic: make existing arithmetic expressions more complex

• RndArgs: randomize the order of function arguments

• Inline: inline the function body at a function call site

• Merge: combine multiple functions

For this set of transformations T , we take up to four obfuscating transformations as in
(|T |

i

)4
i=1

,

resulting in a new sequence of transformations such as (Split), (Split, Flatten, Split), and (Merge,

Inline, RndArgs, RndArgs, Merge). Because there are more combinations of
(|T |

4

)
than

(|T |
1

)
, our

dataset skews toward highly-obfuscated code more than lightly-obfuscated code. This preference

for highly obfuscated code contrasts with related works like [13], [66], [67], [73] which only use

small amounts of obfuscation. These works are notable within the broader landscape of binary

similarity literature for using any amount of obfuscation, but compared to our approach we con-

sider a single obfuscating transformation to be “lightly” obfuscated. While our dataset is primarily

highly obfuscated code, we also include both lightly obfuscated and plain examples.

Each obfuscated or plain source file is then compiled using one of the following groups of options:

• Plain: no change to musl default compilation options

• Loops: -floop-parallelize-all -ftree-loop-if-convert -funroll-all-loops -fsplit-loops -

funswitch-loops

• Codegen: -fstack-reuse=all -ftrapv -fpcc-struct-return -fcommon -fpic -fpie

• Safety: -fsanitize=address -fsanitize=pointer-compare -fsanitize=undefined -fsanitize-

address-use-after-scope

• Os: -Os (optimize for size)
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• O3: -O3 (optimize for speed)

Next we use the binary analysis tool angr [29], [74], [75] to extract a control flow graph (CFG) from

the basic blocks of every object file for every function (Figure 4.1 (C)), then sample random walks

of these CFGs (Figure 4.1 (D)). This stage lets us model a linear, static sequence of instructions as a

set of pseudo-execution trace subgraphs, and allows our dataset to capture potential runtime control

flows without incurring the computational cost or security risk of running potentially malicious

code.

Table 4.2 illustrates the relationship between these subgraphs and the extracted control flow graph.

Each row shows a list of instructions that make up a basic block (truncated with . . . for brevity).

This example comes from the ceil function with the Tigress transformations (Split, Split, Branch)

and compiler optimization group O3. The random walk shown here traverses the blocks numbered

1, 2, 4, 6, and 8 in sequence. At block 1, there is a conditional jump to 0x400119, but in this

random walk, that jump is not taken. Control then falls through by default to block 2, whose

conditional jump to 0x400128 is taken. This particular random walk has length 5 and therefore

stops at block 8, but other walks traversing block 8 could take the conditional jump back to block

1 and demonstrate looping control flow.

|Ci| = min(|Ci|, µ+ σ) (4.1)

After removing transformed sources that do not compile and over-optimized binaries, we balance

the training data according to Equation 4.1. This ensures no class will have more examples than one

standard deviation above the mean number of examples for all classes, reducing extreme degrees

of class imbalance.

When it comes to dataset preparation for binary similarity, most related works employ diverse

compilation. This usually entails using different compilation options, multiple compilers, or dif-

ferent instruction set architectures in the case of cross-architecture similarity analysis. However,

Table 4.3 highlights the key problem of using only compiler options to add diversity to binary
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Table 4.2: Addresses and partial listing of instructions for disassembled object file. Block number
and addresses bold for the random walk (1,2,4,6,8). The last column indicates whether the random
walk takes the conditional jump.

block address instructions jump?
0 0x400000 endbr64 0x400004 . . . 0x400012 ret
1 0x4000fd cmp dword ptr . . . jg 0x400119 no
2 0x40010d pxor xmm2, . . . jp 0x400128 yes
3 0x400119 add rsp, 0x. . . r13 0x400122 ret
4 0x400128 lea r13, [rsp . . . call 0x40013b yes
5 0x400117 jne 0x40012 0x400128
6 0x40013b cmp dword ptr . . . jle 0x400170 no
7 0x400170 mov rdi, r13 . . . call 0x400178
8 0x400145 movsd xmm1, . . . jbe 0x400119 no
9 0x400178 lea rsi, [rsp . . . call 0x400185

10 0x40015f addsd xmm0, . . . jmp 0x400119
. . .

27 0x400096 nop word ptr . . . cs:[rax + rax]
28 0x4000af nop
29 0x4000cf nop
30 0x4000d0 endbr64 0x4000d4 . . . call 0x4000fd

data: some functions are so small they are frequently optimized into nothing. For example, only

two non-obfuscated versions of abs survived our requirement that each compiled example must

contain the function of interest before being stripped of symbols. Conversely, when generating

obfuscated variations of functions our only limits are disk space and patience.

Figure 4.2 shows that the majority of generated object files are small, but the obfuscated object

files have a long tail of outliers with large file sizes. This figure also contrasts the small quantity of

Plain compared to the much larger Obfuscated data.

Some of our models use a bag-of-words approach where byte values are treated as “words”. We

count the bytes of each example to produce a vector V256 where each index Vi denotes the number

of times byte i appears in document D. This experiment reads the object file bytes and creates a

training example by counting the occurrence of each byte value. Figure 4.3 visualizes a portion

of this data. Each row is one vector V256 of byte counts, with functions grouped alphabetically.

Similarities between different samples for the same function appear as similarly-colored horizontal

bands. The normalized plot normalizes by dividing the column sum, and to increase visual contrast
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Table 4.3: Total numbers of files and their basic blocks for each function. Subscripts o and p
indicate Obfuscated and Plain data, respectively.

function Fileo Filep Blocko Blockp

abs 843 2 15284 19
acos 1168 6 111426 151
asin 1168 6 115976 150
atan2 1084 6 252536 428
ceil 1168 6 141695 134
cos 1168 6 337723 187
daemon 1030 6 178383 241
floor 1168 6 141259 133
inet_addr 1140 5 61834 49
inet_aton 1140 6 62656 272
isalnum 1222 6 26814 70
memccpy 1152 6 156176 176
memcmp 1072 4 97352 63
memmem 1222 6 312598 775
sin 1168 6 430119 208
stpcpy 1156 6 38219 141
stpncpy 1164 6 48265 191
strchr 1129 5 31175 42
strcpy 1032 4 16833 22
strncpy 1074 5 17212 28
strstr 1222 6 366570 857
strtok 1168 6 40486 98
tan 1168 6 249496 129
utime 1153 6 26297 67
wmemmove 1128 5 57067 97
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Figure 4.2: Distribution of object file sizes
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the max normalized/max plot additionally divides this value by the max count per row. This figure

makes clear that while different functions are generally visually distinct, there can also be large

differences between instances of the same function, which will confound any model using this

bag-of-bytes representation of the data.
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Figure 4.3: Byte counts

We use angr to extract basic blocks from the binary files. To get textual representation of this

binary data, we use angr’s version of the Capstone3. Next we normalize punctuation so mov

rbx, [rax+0x8] becomes mov rbx , [ rax + 0x8 ]. Finally we normalize hex con-

stants based on their length. For example, 0xf becomes 0x1 (because f is one character),

-0x1a23 becomes -0x4 (1a23 is 4 characters), and 0x1234567812345678 becomes 0x10

(1234567812345678 is 16 characters long, and 16 is 10 in hex). This reduces the domain of

numeric constants tokens by log16 and in practice acts as dimensionality reduction because most

disassembled hex literal values fall within a small range of sizes. These disassembled textual

3Capstone disassembler: https://www.capstone-engine.org/
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tokens become another representation of the data which we use to compare models.

Finally, we categorize this dataset into three logical sections. The majority of samples are Obfus-

cated. We also include a small number of Plain samples with no obfuscation applied. Finally,

we extract a Subset of the obfuscated data by selecting examples which belong to only half of the

function classes. These three sections will be used in training and validation later.

4.2.2 Models

The following sections describe the models we use to classify functions within obfuscated binary

code. We developed multiple models to compare for this work: k-Nearest Neighbors (kNN), Ran-

dom Forest, FastText (an NLP text classifier), and a custom embedding-based model implemented

in PyTorch.

k-Nearest Neighbors

As a baseline, we employ a deflate4-based approach inspired by [76], which uses normalized com-

pression distance (NCD, given in Equation 4.2) as a similarity measure between a pair of doc-

uments D1 and D2. There is only one hyperparameter for this model: k ∈ {1, 3, 5, 9}. The

model accepts binary object files as input, and chooses the k nearest neighbors to a given sample

according to their NCD to determine an object file’s label.

NCD(s1, s2, s12) =
s12 −min s1, s2

max s1, s2
(4.2)

Where s1 and s2 are the sizes of compressed documents deflate(D1) and deflate(D2), and s12 is

the size of the compressed concatenation deflate(concat(D1, D2)).

Random Forest

We train a second classifier on raw object file bytes, but this time using a Random Forest ensemble

model. The hyperparameters we used in this experiment include:

4Deflate compression algorithm: https://zlib.net/feldspar.html
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• n_estimators ∈ {40, 80, 100, 120}

• n_jobs = -1 (use all 18 processors in the development environment)

• class_weight = “balanced”

• other hyperparameters use scikit-learn default values5

Random Foresttokens

This classifier uses the same hyperparameters as the Random Forest model, but instead of using

raw bytes as input, we first disassemble the tokens and then construct a bag of words for the text

tokens. We also use this text token representation for the FastText model.

FastText

The disassembled tokens should embody more structure than the raw byte counts. If our models

can take advantage of this structure they should have better performance. We use FastText [77]

version 0.9.2 to learn word representations of the assembly language tokens. This model uses a

continuous skipgram approach to maximize the log-likelihood given by Equation 4.3

T∑
t=1

∑
c∈Ct

log(wc|wt), (4.3)

where Ct are indices of words around word wt. Our implementation uses the following non-default

hyperparameters:

• threshold ∈ {0.0, 0.1, 0.3, 0.7}

• thread = 18

• lr = 2

• epoch = 300
5Scikit-Learn random forest classifier implementation: https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestClassifier
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• dim = 30

• wordNgrams = 5

Block-Walk Embedding

This custom model takes inspiration from NLP and language modeling to create an embedding at

the basic block level. Rather than using the raw bytes or disassembled tokens, we extract basic

blocks using angr into a “vocabulary” analogous to how an NLP model builds a vocabulary of

words. In preliminary experiments we noticed diminishing improvements when increasing the

embedding dimension above 200 for both the block and walk embeddings layers.

Figure 4.4 shows this model architecture. To preprocess the data for this model, we extract basic

blocks from each object file and normalize hex literals. After normalization, this dataset contains

a vocabulary of about 18500 unique basic blocks. From these basic blocks we sample random

walks of length 5 to construct a secondary set of sequences to encode the function’s potential run-

time control flows. We use PyTorch EmbeddingBag layers to create block and walk embeddings.

Both EmbeddingBag layers use the vocabulary size for their number of embeddings and each uses

mode="max" as its reduction function. Because the input to these EmbeddingBags are multiple

sequences in flattened form, they also receive a positional encoding input containing the starting

offset of each sequence.

The model is implemented using a sequence of PyTorch Modules with a total of 5203666 gradient-

tuned parameters. When saved using the torch.save function, the trained model and its weights

is about 20MB in size. Its layers have the following parameters:

• EmbeddingBag for basic blocks: num_embeddings = 18577, embedding_dim = 200,

mode = ’max’

• EmbeddingBag for random walks: num_embeddings = 18577, embedding_dim = 80,

mode = ’max’

• Dropout: p = 0.45, inplace = False
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• LeakyReLU: negative_slope = 0.01

• AdaptiveMaxPool1d: output_size = 80

• Linear: in_features = 80, out_features = 26 (25 functions plus one “unknown” class), bias

= True

We pass sequences of blocks as well as sequences of random walks to the model as inputs, but all

sequences are not equal length. To inform the model of the size of each sequence, during prepro-

cessing we compute a positional encoding for both blocks and walks. The number of examples

given to the model in each case depends on the batch dimension which in turn varies depending on

the training dataset used.

Evaluation Environment

All experiments were performed on an Ubuntu 22.04.3 LTS workstation with an 18-core Intel(R)

Core(TM) i9-7980XE CPU@2.60GHz and 64GB of CPU memory. For GPU acceleration in Py-

Torch we use an Nvidia GeForce RTX 2060 (Revision A) with CUDA version 11.4 with 6GB of

GPU memory. We used PyTorch version 2.0.1 and Scikit-Learn version 1.3.0 in the experiments

described in this work.

4.3 Results and Discussion

In this section we evaluate the models and compare their results, with tables 4.4 through 4.9 show-

ing macro-averaged F1 scores for different combinations of train and test data. In these tables the

highest F1 score is highlighted in bold. Each table lists the size of the training set N and test set

M for the given experiment. The “setup” column denotes one of the following combinations of

train and test datasets:

1. O/O: train Obfuscated, test Obfuscated (Table 4.4)

2. O/P: train Obfuscated, test Plain (Table 4.5)
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Figure 4.4: Block-Walk Embedding model; BATCH dimension depends on the batch size for each
dataset
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3. P/O: train Plain, test Obfuscated (Table 4.6)

4. P/P: train Plain, test Plain (Table 4.7)

5. S/O: train Plain+Subset, test Obfuscated (Table 4.8)

6. S/P: train Plain+Subset, test Plain (Table 4.9)

These tables can also help an analyst choose what model is best suited to their task. For example,

the kNN model performs best in the scenario where the training data is Obfuscated and the test

data is Plain. However, there is no distinction between training and inference in kNN, as each new

prediction must compare with all previous measurements to determine its NCD value. This means

the runtime for kNN has quadratic time complexity, and this is reflected in the test time column. If

an application prefers faster predictions, kNN is typically the worst choice.

Another consideration is dataset size. The Random Forest model does best in the Plain / Plain

scenario which has the smallest data sizes. In these evaluations we use a similar experimental

setup and apply similar models to [71]. In particular, our experiment using Obfuscated data for

both training and testing

Figure 4.5 shows detailed predicted-versus-actual values for all the functions in different dataset

configurations.

4.3.1 Block-Walk Embedding

We train this model in using Stochastic Gradient Descent (SGD) with two portions of our dataset

over 150 epochs, which takes about 23 seconds in our test environment. The initial learning rate is

20 with a learning rate decay scheduler6 (factor=0.9).

For each epoch our model accepts one mini-batch of 256 obfuscated samples from the Subset

portion of our dataset, and one mini-batch 64 Plain samples. For each of these mini-batches, we

compute a separate Cross Entropy Loss and compute a weighted sum the two losses. In each

6Learning rate decay: https://pytorch.org/docs/stable/generated/torch.optim.lr_
scheduler.ReduceLROnPlateau.html
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Table 4.4: Macro-averaged F1 scores (train Obfuscated / test Obfuscated)

model parameter setup train(N) test(N) train(t) test(t) F1
Block-Walk Embed O/O 800 200 7.41 0.05 0.897
kNN neighbors=1 O/O 800 200 0.00 5.15 0.887
kNN neighbors=3 O/O 800 200 0.00 5.15 0.824
kNN neighbors=5 O/O 800 200 0.00 5.15 0.799
kNN neighbors=9 O/O 800 200 0.00 5.15 0.729
RandomForest estimators=40 O/O 800 200 0.07 0.01 0.895
RandomForest estimators=80 O/O 800 200 0.15 0.03 0.909
RandomForest estimators=100 O/O 800 200 0.17 0.03 0.894
RandomForest estimators=120 O/O 800 200 0.19 0.03 0.905
RandomForesttoken estimators=40 O/O 800 200 0.08 0.02 0.513
RandomForesttoken estimators=80 O/O 800 200 0.13 0.03 0.481
RandomForesttoken estimators=100 O/O 800 200 0.17 0.03 0.500
RandomForesttoken estimators=120 O/O 800 200 0.19 0.03 0.494
FastText threshold=0.0 O/O 800 200 6.08 0.06 0.430
FastText threshold=0.1 O/O 800 200 6.08 0.03 0.430
FastText threshold=0.3 O/O 800 200 6.08 0.02 0.443
FastText threshold=0.7 O/O 800 200 6.08 0.02 0.343

Table 4.5: Macro-averaged F1 scores (train Plain / test Obfuscated)

model parameter setup train(N) test(N) train(t) test(t) F1
Block-Walk Embed P/O 95 200 1.71 0.05 0.637
kNN neighbors=1 P/O 95 200 0.00 0.75 0.623
kNN neighbors=3 P/O 95 200 0.00 0.75 0.555
kNN neighbors=5 P/O 95 200 0.00 0.75 0.499
kNN neighbors=9 P/O 95 200 0.00 0.75 0.479
RandomForest estimators=40 P/O 95 200 0.07 0.02 0.523
RandomForest estimators=80 P/O 95 200 0.14 0.03 0.530
RandomForest estimators=100 P/O 95 200 0.19 0.03 0.606
RandomForest estimators=120 P/O 95 200 0.18 0.03 0.613
RandomForesttoken estimators=40 P/O 95 200 0.07 0.02 0.174
RandomForesttoken estimators=80 P/O 95 200 0.13 0.03 0.177
RandomForesttoken estimators=100 P/O 95 200 0.15 0.03 0.185
RandomForesttoken estimators=120 P/O 95 200 0.20 0.03 0.176
FastText threshold=0.0 P/O 95 200 0.75 0.06 0.187
FastText threshold=0.1 P/O 95 200 0.75 0.03 0.187
FastText threshold=0.3 P/O 95 200 0.75 0.02 0.181
FastText threshold=0.7 P/O 95 200 0.75 0.02 0.049
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Table 4.6: Macro-averaged F1 scores (train Subset / test Obfuscated)

model parameter setup train(N) test(N) train(t) test(t) F1
Block-Walk Embed S/O 800 200 4.62 0.05 0.798
kNN neighbors=1 S/O 800 200 0.00 5.36 0.316
kNN neighbors=3 S/O 800 200 0.00 5.36 0.312
kNN neighbors=5 S/O 800 200 0.00 5.36 0.310
kNN neighbors=9 S/O 800 200 0.00 5.36 0.307
RandomForest estimators=40 S/O 800 200 0.08 0.02 0.316
RandomForest estimators=80 S/O 800 200 0.15 0.03 0.324
RandomForest estimators=100 S/O 800 200 0.16 0.03 0.335
RandomForest estimators=120 S/O 800 200 0.19 0.03 0.332
RandomForesttoken estimators=40 S/O 800 200 0.09 0.02 0.203
RandomForesttoken estimators=80 S/O 800 200 0.15 0.03 0.206
RandomForesttoken estimators=100 S/O 800 200 0.18 0.03 0.204
RandomForesttoken estimators=120 S/O 800 200 0.19 0.03 0.202
FastText threshold=0.0 S/O 800 200 5.88 0.06 0.208
FastText threshold=0.1 S/O 800 200 5.88 0.03 0.208
FastText threshold=0.3 S/O 800 200 5.88 0.02 0.219
FastText threshold=0.7 S/O 800 200 5.88 0.02 0.182

Table 4.7: Macro-averaged F1 scores (train Obfuscated / test Plain)

model parameter setup train(N) test(N) train(t) test(t) F1
Block-Walk Embed O/P 800 43 7.41 0.01 0.400
kNN neighbors=1 O/P 800 43 0.00 2.73 0.868
kNN neighbors=3 O/P 800 43 0.00 2.73 0.753
kNN neighbors=5 O/P 800 43 0.00 2.73 0.650
kNN neighbors=9 O/P 800 43 0.00 2.73 0.554
RandomForest estimators=40 O/P 800 43 0.08 0.02 0.850
RandomForest estimators=80 O/P 800 43 0.13 0.01 0.850
RandomForest estimators=100 O/P 800 43 0.17 0.03 0.819
RandomForest estimators=120 O/P 800 43 0.20 0.03 0.819
RandomForesttoken estimators=40 O/P 800 43 0.08 0.02 0.413
RandomForesttoken estimators=80 O/P 800 43 0.14 0.03 0.409
RandomForesttoken estimators=100 O/P 800 43 0.17 0.03 0.405
RandomForesttoken estimators=120 O/P 800 43 0.20 0.03 0.409
FastText threshold=0.0 O/P 800 43 6.08 0.01 0.482
FastText threshold=0.1 O/P 800 43 6.08 0.01 0.482
FastText threshold=0.3 O/P 800 43 6.08 0.01 0.485
FastText threshold=0.7 O/P 800 43 6.08 0.01 0.271
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Table 4.8: Macro-averaged F1 scores (train Plain / test Plain)

model parameter setup train(N) test(N) train(t) test(t) F1
Block-Walk Embed P/P 95 43 1.75 0.01 0.299
kNN neighbors=1 P/P 95 43 0.00 0.40 0.627
kNN neighbors=3 P/P 95 43 0.00 0.40 0.472
kNN neighbors=5 P/P 95 43 0.00 0.40 0.390
kNN neighbors=9 P/P 95 43 0.00 0.40 0.200
RandomForest estimators=40 P/P 95 43 0.06 0.01 0.655
RandomForest estimators=80 P/P 95 43 0.16 0.02 0.565
RandomForest estimators=100 P/P 95 43 0.15 0.03 0.653
RandomForest estimators=120 P/P 95 43 0.18 0.03 0.641
RandomForesttoken estimators=40 P/P 95 43 0.07 0.02 0.347
RandomForesttoken estimators=80 P/P 95 43 0.12 0.02 0.368
RandomForesttoken estimators=100 P/P 95 43 0.14 0.03 0.368
RandomForesttoken estimators=120 P/P 95 43 0.18 0.03 0.354
FastText threshold=0.0 P/P 95 43 0.75 0.01 0.387
FastText threshold=0.1 P/P 95 43 0.75 0.01 0.387
FastText threshold=0.3 P/P 95 43 0.75 0.01 0.381
FastText threshold=0.7 P/P 95 43 0.75 0.01 0.163

Table 4.9: Macro-averaged F1 scores (train Subset / test Plain)

model parameter setup train(N) test(N) train(t) test(t) F1
Block-Walk Embed S/P 800 43 3.69 0.01 0.400
kNN neighbors=1 S/P 800 43 0.00 2.87 0.368
kNN neighbors=3 S/P 800 43 0.00 2.87 0.338
kNN neighbors=5 S/P 800 43 0.00 2.87 0.321
kNN neighbors=9 S/P 800 43 0.00 2.87 0.298
RandomForest estimators=40 S/P 800 43 0.07 0.01 0.368
RandomForest estimators=80 S/P 800 43 0.17 0.03 0.391
RandomForest estimators=100 S/P 800 43 0.17 0.03 0.383
RandomForest estimators=120 S/P 800 43 0.20 0.03 0.391
RandomForesttoken estimators=40 S/P 800 43 0.09 0.02 0.234
RandomForesttoken estimators=80 S/P 800 43 0.14 0.02 0.234
RandomForesttoken estimators=100 S/P 800 43 0.18 0.03 0.228
RandomForesttoken estimators=120 S/P 800 43 0.20 0.03 0.229
FastText threshold=0.0 S/P 800 43 5.88 0.01 0.209
FastText threshold=0.1 S/P 800 43 5.88 0.01 0.209
FastText threshold=0.3 S/P 800 43 5.88 0.01 0.235
FastText threshold=0.7 S/P 800 43 5.88 0.01 0.231
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Figure 4.5: Confusion matrices for different models and train/test configurations

training iteration, we add the computed Plain and Subset loss with equal weight before updating

gradients as per Equation 4.4. Here we extract the weighting parameter α because in principle

these different training data could be weighted separately so long as their weights sum to 1. We

experimented with different weights but found no significant differences from α = 0.3 to α = 0.7.

α = 0.5

loss = α× lossPlain + (1− α)× lossSubset
(4.4)

We use an initial learning rate of 20, decreased over the course of training using PyTorch’s

ReduceLROnPlateau learning rate scheduler which decays the learning rate by a factor of

0.9 whenever the validation accuracy in the current epoch is lower than the previous epoch. The
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loss, training accuracy, and validation accuracy are shown for this training in Figure 4.6.
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Figure 4.6: Training the Block-Walk Embedding model

Some Plain functions do not appear in their respective test set and we give them an F1 score of

0 by default. We include individual function F1 scores as well as macro- and micro-averaged

F1 scores for the model as a whole in Table 4.10. When tested with a large enough dataset, we

find that combined training improves F1 scores for most functions and offers significant overall

improvements. For example, the sin function is absent from the Subset training data, but by

learning about sin from the Plain data and also learning about obfuscation from the rest of the

Subset data, the model is better able to detect obfuscated examples of sin.

4.3.2 Function Detection

Finding a known function within an unknown binary file is a reverse engineering task used in the

contexts of malware identification and intellectual property protection. In practice, most reverse

engineering practitioners employ sophisticated software suites such as IDA Pro or Ghidra, which

contain disassemblers, decompilers, visualization tools, and multiple analysis workflows. De-
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Table 4.10: F1 scores per-function after 150 training epochs

f O/O P/O S/O O/P P/P S/P f ∈ S
abs 1.00 0.40 1.00 0.00 0.00 0.00 yes
acos 0.67 0.73 0.67 0.00 0.00 0.00 no
asin 0.57 0.75 0.80 1.00 0.67 1.00 yes
atan2 1.00 0.75 1.00 1.00 1.00 1.00 yes
ceil 0.80 0.80 0.80 0.00 0.00 0.00 no
cos 0.86 0.89 1.00 0.00 0.00 0.00 no
daemon 1.00 1.00 1.00 1.00 1.00 1.00 yes
floor 0.86 0.86 0.67 0.00 0.00 0.00 no
inet_addr 1.00 0.20 0.75 1.00 1.00 1.00 yes
inet_aton 1.00 0.89 0.89 1.00 0.00 1.00 no
isalnum 1.00 0.80 1.00 0.00 0.00 0.00 yes
memccpy 1.00 0.83 0.77 0.00 0.00 0.00 no
memcmp 0.67 0.25 0.50 1.00 1.00 1.00 yes
memmem 1.00 0.80 0.80 0.00 0.00 0.00 no
sin 0.73 0.80 1.00 1.00 0.80 1.00 no
stpcpy 1.00 0.44 0.80 1.00 1.00 1.00 no
stpncpy 0.91 0.89 0.89 0.00 0.00 0.00 no
strchr 1.00 0.18 0.93 0.00 0.00 0.00 yes
strcpy 0.86 0.50 0.50 0.00 0.00 0.00 yes
strncpy 0.77 0.57 0.44 0.00 0.00 0.00 no
strstr 1.00 0.89 0.89 0.00 0.00 0.00 yes
strtok 0.93 0.44 1.00 1.00 1.00 1.00 yes
tan 0.80 0.50 0.92 1.00 0.00 1.00 yes
utime 1.00 0.43 0.93 0.00 0.00 0.00 yes
wmemmove 1.00 0.33 0.00 0.00 0.00 0.00 no
F1 (macro) 0.89 0.67 0.80 0.40 0.29 0.40
F1 (micro) 0.91 0.65 0.84 0.92 0.69 0.92
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spite this sophistication, reverse engineering is generally labor-intensive and requires specialized

knowledge and experience. One aim of our work is to improve the day-to-day productivity of such

practitioners. Toward that goal, our obfuscated-based approach is designed to detect similar but

not identical examples of known functions. By making a prediction that some part of an unknown

binary is most similar to one known function or another, we can help the reverse engineer hone in

on more interesting regions of the binary, and spend less time reverse engineering something that

is already known or is uninteresting from an analysis perspective.

To evaluate our model on the real-world task of detecting similar functions within an unknown

binary, we select open-source samples of statically linked executable files7 and malware samples8.

These programs are stripped of debug symbols, but because the source code for some of the sam-

ples is available, we can check the quality of our model’s predictions.

Our methods trained on binary data of varying sizes, but each of our samples contained only one

logical function. Real world programs contain multiple functions, so instead of reporting which of

the training functions is most similar to the entire test program, we instead consider partial context

windows within the larger test program. The choice of context size is somewhat arbitrary, but

in the interests of pragmatism we choose a context window large enough to contain 70% of our

obfuscated training samples.

As we move the context window in overlapping strides across the test program, the model predicts

a similarity score between the training data and the subset of the test program contained by the

window. We convert this score to probabilities and exclude any prediction below some threshold

T within a context window size W moving with stride size S.

In Figure 4.7, we use the Block-Walk Embedding model to analyze a single malware file corre-

sponding to the Petya ransomware [78]. The results of applying our model to unlabeled data such

as this malware sample require a degree of interpretation and skepticism. Our training data is an

arbitrary selection of standard library functions, so what does it mean for our model to classify part

of a malware file as “similar” to a training class? One possibility is that the unknown binary ac-

7Static-binaries repository: https://github.com/andrew-d/static-binaries
8“the Zoo” malware repository: https://github.com/ytisf/theZoo/
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tually contains the predicted library function. On the other hand, a more likely explanation is that

this section of the malware simply shares some characteristics to the training function. However, if

a section of the malware is a close match for a function such as ceil that may be less interesting

than if a section of malware is a close match for inet_aton, because that more strongly indicates

the malware is trying to connect to a command and control server or exfiltrating data.
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Figure 4.7: Function predictions in “petya0” binary

In Figure 4.8, we show multiple benign and malware programs side-by-side. The benign programs

are from an open-source collection of statically compiled binaries. Interpreting results for benign

programs requires the same degree of judgment as for malware programs, but we can notice some

differences. For example, two different versions of petya (petya0/petya1) have more in common

with each other than with the wannacry malware. Meanwhile, all the benign programs have some

differences from the malware programs.
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4.4 Conclusions

In this work we propose a method of data augmentation for binary similarity analysis based on

source code obfuscation. We demonstrate different models capable of detecting similar functions

with a training set with varying degrees of feature engineering. Our results show that it is possible

for these models to generalize to unseen test data and learn different features from both Plain and

Obfuscated datasets. Our Block-Walk Embedding model takes advantage of the graph structure

inherent in most compiled binary code and analyzes binaries at the basic block level of granularity.

Extracting basic blocks depends on additional feature engineering beyond the level of a disassem-

bler. In our work, we used the angr analysis framework, but similar facilities exist in IDA Pro,

Ghidra, Radare29, and other reverse engineering software. For our purposes, angr was preferable

for this task due to its runtime speed and ease of integration with existing Python-based scripts.

While the motivation for this work is to determine semantics for an unknown binary, in practice

this is an intractable problem. But by reducing this problem to one of approximate similarity to

a set of known functions, we can arrive at a practical implementation. Future works should note

that the most effective use of our approach is to treat the training functions as focal points. With

a model trained to recognize a small set of “interesting” functions, a reverse engineer can analyze

an unknown binary more effectively. Large swaths of the unknown binary may be uninteresting

for analysis purposes, but the engineer can target their efforts on those regions that contain close

matches.

One limitation of this work is that in order to train on highly obfuscated code, an advanced ob-

fuscation framework is required. Tigress satisfies this requirement, but comes with additional

requirements that the original source code must be written in the C programming language, and

the analyst must have a copy of this source code. Similar approaches in this domain often utilize

obfuscator-llvm [26] instead of Tigress, which operates on llvm’s intermediate representation (IR)

rather than on C source code. While currently obfuscator-llvm has a small set of transformations,

it inherently supports multiple programming languages and is a cross-compiler, which greatly sim-

9Radare2 reverse engineering software: https://www.radare.org/r/
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plifies the task of exploring obfuscation for different platforms and programming environments.

A more significant limitation is this work’s focus on obfuscation types that alter literal values or

control flow. Meanwhile, more advanced obfuscation techniques exist. Virtualization, in which

the code is obfuscated by implementing a virtual machine and then encoding instructions for that

machine, is a more challenging transformation to analyze due to the higher-order representation.

Similarly, just-in-time (JIT) compilation is a transformation that occurs at runtime. Because our

method uses purely static analysis, it may be less effective with JIT or virtualized transformations.

In this work we did not study these because while Tigress includes such transformation options, we

found that these required significant manual work to produce valid executables. Some of these lim-

itations are due to Tigress’ underlying C parsing engine not supporting newer C standard features,

but it is an area which future work could explore.

As a practical consideration, obtaining source code for certain types of programs is not always

possible, but when it is, we propose making the most of it with our obfuscation-based data aug-

mentation method, and training on a mixture of obfuscated and plain data sources. This should

promote models to learn about the ways code can be obfuscated while also specializing on the

functions of interest to the reverse engineer.
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CHAPTER 5

RELATED WORK

5.1 Introduction

Today’s engineers use complex tools to transform their ideas and specifications into binary arti-

facts. The tools for constructing hardware designs and software designs differ in important ways,

but they also share fundamental similarities. Most notably, both hardware and software construc-

tion depends on multiple transformations to source code. Many of these transformations are per-

formed on intermediate, graph representations of the source code’s syntax and semantics.

These tools make up the lowest levels of the hardware and software supply chain. Everything

built above this level inherits vulnerabilities of the lower levels [79], making these tools attractive

targets for attackers. While mitigations have been proposed for software [80], similar fixes may be

required for hardware synthesis tools.

Open source projects like LLVM and GCC have advanced the state the art of compilers, and re-

duced the barrier to entry for security analysts. This is one reason why commercial companies

contribute to these projects, even though their contributions may help their competitors. Concen-

tration of effort allows more specialization, and gives niche research a path to practical imple-

mentation, by integrating with an existing project. Features that were once restricted to academic

or special-purpose compilers are now accessible in mainstream compilers A similar open source

revolution has yet to occur for hardware synthesis tools, in part because the diversity of hardware

makes standardization difficult.

5.1.1 Threats Affecting Software and Hardware

Despite the differences between compilers and hardware synthesis tools, and despite differences

in approach (open source versus proprietary), hardware and software systems face similar threats.

The most relevant threats are defined below.
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Piracy When a company’s competitor copies their software to sell it as their own, a form of

intellectual property (IP) theft.

Malware Software that either harms the legitimate user, or subverts their machine for the at-

tacker’s purposes.

Ransomware A form of malware which encrypts the user’s files and demands payment in ex-

change for an unlocking key.

Trojan A type of malware which infiltrates the target’s system in order to gain control. This type

of attack is sometimes the entry point for other attacks, such as ransomware.

Side Channel Attack Unauthorized access to a system by indirect means. This attack can take

many forms, including Van Eck phreaking [81], detecting keystrokes through motion anal-

ysis [82], bypassing encryption by monitoring power consumption [83], leaking data by

exploiting DRAM refresh cycles [84], or bypassing address space layout randomization by

monitoring the timing of a memory management unit [85].

5.1.2 Vulnerabilities Are Bugs

While it may be true that the malware author considers vulnerabilities to be features, for the rest

of us they are bugs. Error mitigation strategies for both software and hardware have much in

common, such as the use of functional and behavioral testing. However, testing can only prove the

presence of bugs, not their absence [86]. Analysis of initial source code can catch some bugs, but

ultimately the compiled or synthesized binary artifacts should also be analyzed, in case additional

errors are introduced by the compiler or synthesis toolchains. Behavioral testing (or “functional” or

“integration” testing) is a common way to test the compiled binary file, since this ideally exercises

the same code which would be distributed to end-users.

In software, many aspects of a program can be encoded in the programming language’s type sys-

tem. Programmers can leverage strengths of type systems to avoid entire classes of bugs at com-

pile time, with the automated error checking provided by the compiler and the type system. For
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example, the Rust programming language enforces variable ownership and lifetimes in its type

system, preventing use-after-free errors which are common to languages like C and C++ which

use manual memory management. Notably, Rust’s type system also prevents data races which are

common even in garbage-collected languages like Java and Go [87]. In addition to type system

guarantees, programming languages can take advantage of other forms of static analysis, in part

because compilers permit analysis of intermediate representations, before transforming the code

to hardware-specific binary formats. Conversely, weaknesses in a type system can become “bil-

lion dollar mistakes” as in the case of null references [88]. Finally, dynamic or run time testing

is also used for programming languages, and again software has an advantage because of the rel-

atively small number of hardware platforms they must support. These hardware platforms can be

emulated, allowing programmers to test their code more cheaply on virtual hardware.

In hardware, functional tests are ubiquitously used to help ensure correctness. The drawback to

testing in hardware is that the platform is entirely or mostly customized to the application, which

means there is no standard for emulation. This does not prevent emulation in theory, but in practice

it means that emulators for hardware are one-off designs that can not be reused for other applica-

tions. Tests are especially important in hardware because commonly used hardware description

languages like Verilog and VHDL have only a rudimentary type system able to distinguish be-

tween registers and wires of different sizes.

A further limitation of error checking for hardware is the lack of standardized intermediate rep-

resentation. This lack ensures that hardware synthesis tools remain self-contained and unable to

benefit from related work on aspects of the transformation process. For example, if hardware se-

mantics at the register-transfer level were standardized by all vendors, then Verilog written in a

Xilinx tool could be more easily ported to an Altera FPGA, and vice versa. Standard interfaces

also facilitate emulation and cheaper testing, which encourages more types of testing, which in

turn can catch more types of errors. However, recent progress in embedded system peripheral

emulation suggests a way forward for generic hardware emulation [89].
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5.1.3 Software Compilation

While software comes in many forms, this work focuses on compiled software. A compiler is a

program which transforms human-written source code into binary executable code. This binary

format is essentially unreadable by humans, which hinders analysis. This is especially true when

the software is distributed in binary form only.

Given this difficulty, why would anyone analyze the binary instead of the source code? Because the

source code may not reflect the true meaning of the produced binary, due to compiler errors, unde-

fined behavior, or malware. Unfortunately, disassembler and decompiler tools can never perfectly

reverse the assembly and compilation processes, because those processes are typically “lossy” and

discard some of the original source’s information.

5.2 Motivation

As more aspects of our work, lives, society, and physical world become Internet connected, we

gain both convenience and vulnerabilities. Recent supply-chain attacks demonstrate that these

vulnerabilities have not only monetary or business consequences, but also physical impacts. For

example, in early 2021, ransomware attacks [90], [91] impacted the US fuel and food supply.

Attacks on these parts of our supply chains make headlines, but lower-level parts of the hardware

and software supply chains have even wider scope and are therefore even more important to secure

against threats. Malware is increasing over time, as shown in Figure 5.1.

5.2.1 Ransomware

Ransomware is a software version of extortion. When successful, it encrypts the target machine

so the owners do not have access to their own data. The attacker holds the private key and can

access the data at will. Attackers may then demand a ransom in exchange for the key, and may use

“double extortion” and threaten to release private information. This private information can be cus-

tomer information like credit cards, or proprietary information which would benefit competitors,
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Figure 5.1: New Malware Identification 2011-2020 [7]

or information which would embarrass the people or company if it became public.

Figure 5.2: Ransomware Increasing [92]

As shown in Figure 5.2, ransomware has become increasingly popular in recent years, and is now

a profitable criminal industry. There are software-as-a-service (SaaS) vendors of ransomware and

multiple products geared toward this activity. Often, ransomware attacks appear to operate out of

different countries [93] from where the attack takes place, taking advantage of extradition laws to

reduce their own risk.
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5.2.2 Cybersecurity

The 2020 data breach of the US federal government [94] utilized vulnerabilities in supply chain

components involved in federated authentication. This attack leveraged vulnerabilities in multiple

software components, at different levels in the software supply chain. More recently, researchers

have noted [95] that the widespread use of commercial, off-the-shelf components has caused at-

tackers to shift their focus earlier in the product lifecycle.

Connecting infrastructure to the Internet affords many advantages. For example, the recent

COVID-19 global pandemic forced many businesses to switch to remote work for all but essential

personnel. Connecting existing infrastructure to the Internet inherently increases its “attack sur-

face”. In addition, network connectivity software can bring its own vulnerabilities and bugs. But

most importantly, because network connectivity is often added on to an existing system, the threat

model of the original system may not be compatible with Internet connectivity, and so may expose

additional vulnerabilities due to insecure configuration.

The concept of information security is broader than cybersecurity, as it includes topics such as state

secrets, intellectual property, and personal information. But for the purposes of this work, there

are two primary aspects of information security: information at rest, and information in transit.

Information at rest includes all persistent storage of data. This can be stored on a hard drive, or on

paper. Information in transit is when some data moves from one location to another, usually for

the purposes of sharing the information between authorized parties.

Cryptography is about securing communications so that only those with authorization may un-

derstand the messages. In practice, this involves encrypting messages such that an eavesdropper

would not be able to read the messages, or to prevent third parties from tampering with messages.

End-to-end encryption is a concept in which messages are encrypted at all stages of the communi-

cation life-cycle - when they are generated, when they are in transit, and when they are read by the

recipient.

One practical limitation of information security are illustrated by in Figure 5.3. Decryption is

hard, but forcing a person to reveal the message is easier. There are internal threats to informa-
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Figure 5.3: Threat Modeling [96]

tion security, such as employees who sell secrets to their employer’s competitors. There are also

external threats, such as competitors or even nation-states practicing industrial espionage. Despite

best information security practices, malicious actors still exist. But instead of giving up in despair,

practitioners use “threat models” to help decide appropriate steps.

The concept of a “threat model” implies imagining a way in which the service or information could

be attacked, and then devise a protection against that specific attack. The reason for this narrow

focus is to help security practitioners decide whether this particular threat is worth the effort of

implementing the defense. Attack Trees [97] can help focus where to spend a security budget, as

well as keep track of which components depend on security of others, so that new attacks propagate

throughout all their dependencies.

5.2.3 IoT Devices

A domain which symbolizes the rapid change in technology is the “Internet of things” (IoT). IoT

may refer to any thing with an Internet connection, but especially devices which interact with the

physical world, and which have only recently become connected to the Internet, such as refrig-

erators and light bulbs. Security of IoT devices is often an afterthought, and as a result, many

compromised IoT devices have become part of botnets and used as part of DDoS attacks on sec-

ondary targets.
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Figure 5.4: Mirai Botnet DDoS Attack [98]

One such botnet is Mirai, which as shown in Figure 5.4 in 2017 achieved the largest DDoS attack to

date [98]. These attacks are difficult to defend against, because they closely resemble the activity

of real users. Botnet scopes can be large, as illustrated by the Carna botnet in Figure 5.5, with

420 thousand active clients globally in a 9-month period. The IoT extends to “things” such as

automobiles, where the consequences of attacks are more serious.

5.2.4 Physical Security

In the physical world, we have physical security. Walls keep our environments controlled, and keep

threats out. Locks allow entry for those with keys. However, physical security is only considered

for this document if it also pertains to information security. For example, when those locks connect

to the Internet, the potential exists to unlock the door not with the relevant key, but by exploiting a

software vulnerability.

5.2.5 Supply Chain

In the modern world, most goods and services are realized by combining a huge assortment of

other goods and services. For example, a simple office chair may contain parts sourced from
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Figure 5.5: Carna Botnet DDoS Attack [99]

dozens of different countries, and may have been partially assembled in different countries. The

flow of goods through this complex network of separate stages is called a supply chain. The supply

chain has physical properties, such as where different parts are made or assembled. There are also

logical aspects, such as who makes a particular part, and when. To manage this complexity, the

modern supply chain is highly dependent on software. This software manages everything from

logistical schedules to computer programs that operate industrial machines.

5.2.6 Software “Toolchains”

At the lowest level of the supply chain, below the hardware and software which powers the supply

chain, is yet more software. This is the domain of compilers (programs that generate other pro-

grams) and hardware synthesis (programs that design hardware). These programs assist humans

in creating the hardware and software artifacts which eventually power the entire supply chain and

manage its complexity.

Popular modern compilers include Microsoft’s MSVC, the Gnu Project’s GCC, and LLVM’s Clang

compiler. With the exception of MSVC, these projects have an “open source” model, where anyone
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can view the source code, and nearly anyone can propose modifications to the code, which are

accepted with a kind of peer review process.

The open nature of these projects can be a liability or an asset, depending on your point of view.

However, the economics of this open contribution model make it difficult for a single attacker to

subvert the entire project, or at the very least makes such attacks harder to hide. This was not al-

ways the case. In the early days of compiler software, most development was done by researchers,

and they rarely worked together on the same compiler. In the 1980s-1990s, proprietary commer-

cial closed-source compilers were the most widely-used type of compiler. While these commercial

compilers had some advantages, such as dedicated support for particular input languages and tar-

get architectures, they were often incompatible with each other, and would sometimes interpret the

specifications and requirements of their input languages differently. Since the early 2000s, open

source compiler projects have seen increased support, both in the form of contributions from volun-

teers, as well as paid sponsorship from corporate entities. Rather than invest in in-house compilers,

many companies have seen value in contributing to popular open source compiler projects. This al-

lows companies to still have some say in compiler development, but reduce their total engineering

cost by not having to build the entire project alone.

5.3 Challenges

Technical challenges of logistics and economics dominate traditional supply chains, and cultural

factors complicate information security. Today, most hardware synthesis is performed using propri-

etary closed-source tools provided by the same vendor that manufacturers the hardware itself. The

situation is generally better for software, in large part due to the proliferation of high-quality free

and open-source compilers such as gcc and clang. However, third-party software is increasingly

commonly used in software to improve productivity. As can be seen from Figure 5.6, the hardware

and software supply chain is very complex. Managing this complexity is a key challenge.

Another factor which slows adoption of security solutions is inertia. Individual people resist change

because they are more comfortable with what they already know. Institutions resist change because
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Figure 5.6: Hardware and Software Supply-Chain Complexity [95]

it requires a large investment of effort to change their processes - effort which could otherwise

be spent improving products or seeking more customers. Even when a high-risk vulnerability is

known, organizations may still sometimes fail [100] to implement timely fixes.

Political and organizational policies define what is important for many people. For example, in

a startup the highest priority may be time-to-market, and security is a lesser concern. In govern-

ments, security may only become a priority if politicians sense sufficient political will from their

constituents to support it.

5.4 Opportunities

Despite the complexity and challenges in the field of toolchains and information security, there

are opportunities to improve best practices and the state of these arts. The first opportunity is to

improve quality (of results as well as of user experience) of the toolchains. There are multiple

methods to analyze the quality of software and hardware. This literature review will highlight

some of these methods, such as static analysis using machine learning, and dynamic analysis using

fuzz testing and symbolic execution.
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Depending on how you measure, either computer hardware or computer software is the lowest

“level” of our modern systems. Computer hardware ultimately executes all software. However,

modern computer hardware is designed using a class of software called Electronic Design Automa-

tion (EDA) tools. If the EDA tools are compromised, then the hardware itself is compromised. As

Ken Thompson [79] noted, it’s more important to trust the people behind the tools, than the tools

themselves.

Proving the presence of counterfeit or pirated hardware or software is currently a difficult task.

This is due to many optimizations which can make even the same source code appear different after

compilation or synthesis. If detection of counterfeit or pirated code was easier, companies would

have an easier time prosecuting whoever illegally copied their code. Users of software would also

be protected, because they could know with more certainty that they are using legitimate products.

Most importantly, improving the best practices for securing our supply chains, from the lowest lev-

els, strengthens the entire supply chain. While the effort to improve compilers and EDA tools may

be significant, the benefits are astronomical, and investments in prevention can be more efficient

overall than responding to individual incidents. Just as vulnerabilities propagate upward through

all affected components, the benefit of each vulnerability fixed at the lowest level is multiplied

by all the software or hardware which is built upon this level. Therefore, any improvements to

compilers and synthesis propagate to all the applications of these tools.

5.5 Software Vulnerabilities and Mitigations

Finding vulnerabilities in software usually involves both static and dynamic analysis. Static anal-

ysis is faster, but typically can not find bugs which result from particular system states. Static

analysis can include simple linear matching or more complex graph analysis. Linear (or “string”)

matching is less computationally intensive compared to graph techniques, but also less robust to

minor code changes.

Dynamic analysis can find any run-time bug, in theory. However, in practice, it is too time-

consuming to execute every possible state. To address this limitation, heuristic approaches, such

87



as fuzz testing, are used to test a subset of possible states.

While it is possible to statically analyze source code, this work focuses on analysis of binary files.

Binary analysis has to contend with multiple challenges.

5.5.1 Deobfuscation

One challenge of binary analysis is that of obfuscation, where the meaning of the program is inten-

tionally hidden. Udupa et al. describe multiple types of obfuscation. First is surface obfuscation,

in which variable names are changed. Next is deep obfuscation, which changes control flow or

data reference behavior [37]. For real-world binary analysis, surface obfuscation does not greatly

inhibit program understanding, so we are mainly concerned with deep obfuscation.

When viewed as a graph, a typical program fragment such as the function in Figure 5.7 consists of

multiple branches and loops. A type of obfuscation called flattening converts a program’s Control

Flow Graph (CFG) to a jump table structure, which transforms the shape of the graph. While

flattening can make a program much more difficult to analyze, Udupa et al. show that flattening

can be de-obfuscated statically. Their approach uses a technique called constant propagation,

which is also typically part of compiler optimizations.

int f(int i, int j) {

int a = 1;

if (i < j)

a = j;

else

do {a *= i--;}

while (i > 0);

return a;

}

Figure 5.7: Source Code [37]
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The function’s CFG and its flattened version are shown in Figure 5.8. Flattening dramatically

changes the linear representation of the program, and hinders linear search based techniques. Bi-

naries which were obfuscated with both flattening and intra-procedural control flow could not be

de-obfuscated with a purely static approach. However, with dynamic analysis, functions could be

de-obfuscated. A limitation of this dynamic approach is that it only works on functions which are

actually called at run-time.
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Figure 5.8: Left: Control Flow. Right: Flattened [37]

5.5.2 Concolic Testing

A technique called concolic execution or concolic testing combines symbolic execution with con-

crete values. The reason to combine these two types of analysis is that fuzzing (testing concrete

values) is efficient to test, but untargeted. Meanwhile, symbolic execution can precisely find “in-

teresting” values, but is much more computationally intensive to run. Symbolic testing is slow due
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to the potential for combinatorial explosion of states, and is limited by the precision of the theorem

prover or constraint solver used.

By combining fuzzing and symbolic execution, the fuzzer explores interesting code paths, and then

the symbolic execution engine can “drill down” those paths. This saves time since the symbolic

execution does not have to exhaustively search the entire state space. Stephens et al. [74] enhance

this idea with “compartments” which categorize values which a program must take in order to

reach a certain path, versus other valid or in-between values. Fuzzing mitigates the state space

explosion problem, and uses a heuristic which counts state transitions to determine the interesting

paths, rather than keep track of each state individually. The authors combine these features in a

tool called Driller, emphasizing the “drill down” aspect of analysis.

5.5.3 Bug Signatures

By creating “bug signatures” in the intermediate representation IR, Pewny et al. are able to em-

ulate I/O behavior to determine semantics [30]. They achieve this by sampling and hashing the

sampled results. Their IR covers 3 distinct instruction set architectures (ISAs): x86, ARM, and

MIPS. Even among firmwares with different ISAs, their sampling and hashing method is able to

find vulnerabilities like Heartbleed, which was previously thought [101], [102] to be prohibitively

difficult for signature-based methods to detect. Additionally, the method of [30] was able to find

backdoors in closed-source MIPS and ARM-based router firmware.

5.5.4 Binary Analysis Techniques

Shoshitaishvili et al. [29] explain that there is a need to analyze binary files, and not just source

code, because there can be malicious code embedded within the compiler, or which modifies code

during transmission which can alter the actual code that executes. In addition to intentional ma-

licious code, all steps of building and transmitting code can have errors. The authors produced a

binary analysis engine, called angr, to try and consolidate efforts of many researchers in this area.

Angr provides a framework for static analysis, dynamic analysis, and other features. For dynamic
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analysis, angr facilitates concolic (concrete and symbolic) testing as well as fuzzing, as mentioned

by [74].

The techniques described in [29] include static analysis, dynamic analysis, their analysis engine

(angr), and others. They claim that static analysis is too “pessimistic”, meaning it produces too

many false positives when searching for problematic code. Despite that, angr still benefits from

some forms of static analysis. For example, control flow graph (CFG) recovery requires analyzing

multiple different categories of indirect jumps:

• computed

• context-sensitive (as in the case of callback functions)

• object-sensitive (as in the case of virtual functions, especially when analyzing code which

came from compiled C++ sources)

Graph-based vulnerability discovery is another aim of this static analysis. The aim here is to search

for examples of already-known vulnerable within the given code. By maintaining a database of

already-discovered vulnerabilities, both in machine code and source code, this type of search can

be extremely fast. Shoshitaishvili cites [30] as a source of this method. The downside to this type

of matching-based search is that copied or malicious code often is obfuscated to hide its meaning

from exactly this type of detection.

The dynamic analysis techniques used by angr include concolic testing and fuzzing.

The analysis engine, angr, uses an intermediate representation (IR) taken from the Valgrind project

called libVEX, and handles multiple different binary formats. The engine also handles symbol

resolution and relocation. Their state representation component, SimuVEX, handles register values,

symbolic and abstract memory, as well as commonly used libraries like POSIX. This interfaces

with plugins like Solver and Architecture.

The additional features afforded by angr include crash replay, and it can be used for tasks like

exploit hardening as well. Overall, the goal of angr is to be a framework for facilitating multiple

different forms of analysis.
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5.6 Software Compilation

Generally, compilation transforms one language to another. Usually, the transformation is from a

“high level” language to a relatively “low level” language. For example, translating C++ source

code into x86-64 executable machine code. Unless otherwise mentioned, the type of compilation

is usually “ahead of time” or AOT. There are other types such as “just in time” or JIT compilation,

which does some of the compilation at run-time. This is subtly different from an “interpreter”,

which interprets source code at run time and translates it into executable code, although things

like JIT compilation blur this distinction. The reasons for compiling a language usually include:

better run time performance, more extensive static analysis to catch bugs prior to run time, and an

ahead-of-time compiler can perform extensive optimizations which would be too computationally

costly to perform at run time Sometimes, developers choose to compile their programs because it

can obscure the ideas of the source code. This obfuscation is due to compilation being a “lossy”

process. Some information such as comments and variable names may be removed by the compiler,

which makes it harder for a human reader to understand the intent of the code.

5.6.1 Compiler Construction

Traditionally, because the input language and output language are both syntactically and semanti-

cally different, the process of compilation is split into multiple distinct parts. Often, compilers are

described in terms of having a front end, which recognizes one or more languages, and produces an

intermediate representation as its output. As shown in Figure 5.9, this intermediate representation

may be further transformed by multiple other phases in the middle section of a compiler, including

various forms of optimization. Ultimately, the results of the middle phases are transformed by a

back end which produces machine code for a target architecture. As the front end may accept more

than one source code language, so the back end may emit code for more than one architecture.

A common way to categorize all these phases in the compiler pipeline with finer granularity than

front, middle, and back, is given by [103]. These finer-grained phases are: tokenizing, lexical
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analysis, syntax analysis, context handling, and code generation. Any of these steps may be further

decomposed into smaller tasks.

Syntax Analysis
(Front-End)

Code Generation
(Back-End)

Optimization

Optimization

Intermediate
Representation

Source
Code

Machine
Code

Figure 5.9: Compiler Phases

Tokenizing usually implies reading the characters or bytes of a text representation of a program

into larger, more meaningful pieces, or tokens. For instance, separating words from punctuation

and whitespace characters. Lexical analysis is a further refinement of this task, in which usually

some form of longest-string matching finds particular words and classifies them according to the

language specification. For example, the C language has the keyword called “while”, which has

a particular meaning to the language. But C does not have a keyword called “meanwhile” So

even though the keyword “while” is a substring of “meanwhile”, a correct tokenizer for the C

language would not treat “meanwhile” as containing the keyword “while”. Lexical analysis is

strictly an analysis of regular language, and as such can be processed with regular expressions.

Syntax analysis handles aspects which can not be handled by regular languages, such as contextual

information. This aspect of compilation can be used to distinguish between tokens based on where

they appear in the program. For example C has a keyword “while” but it also has strings of

characters. If the characters ’w’ ’h’ ’i’ ’l’ ’e’ appear in sequence within a string, this should

not be treated as the keyword, but rather as part of the string. Usually syntax analysis results in a

representation of the program as an abstract syntax tree (AST) which encodes more structure of the

program. Together, lexical analysis and syntax analysis are often referred to as “parsing”. Context

handling augments the AST form with environmental or contextual information, for instance to

help determine the types of variables. Finally, code generation produces a result in the form of the
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output language of the compiler.

5.6.2 Nanopass Compiler Framework

This word describes a framework [104] for writing compilers, which emphasizes the creation of

multiple intermediate languages tailored to make particular transformations easier. Nanopass ba-

sically uses a separate IR for each transform. This splits the overall compilation task into many

separate steps. For example, type checking can be one “pass” out of many. Each pass produces an

intermediate language, which may have no relation to the input or output languages.

5.6.3 LLVM and Intermediate Languages

It is worth noting that in modern compiler projects such as the Gnu Compiler Collection (GCC),

multiple choices of input and output languages are supported. But because of this separation of

concerns, handling multiple different input languages can be achieved by adding a different set of

“front ends”, one for each language, which deal with the concrete syntax of the input language.

The Low-Level Virtual Machine (LLVM) [31] is a modular compiler framework, which aims to

consolidate effort from many unaffiliated compiler researchers into a single framework.

For example, the world’s top register allocation experts can work on LLVM’s register allocator

module, alongside parsing experts working on its parser module. Compiler writers can then “plug-

in” modules from these separate parts for their own specific input-output language requirements.

Internally, LLVM uses a form called Static Single Assignment, in which each variable is assigned

to exactly once. This form permits some optimizations which are not possible if a variable’s value

is allowed to change throughout the run time of the program. LLVM also uses a simple language-

independent type system, and has language-independent exception handling facilities (for example

the setjmp/longjmp library in C which provides exceptions to the usual programmatic control flow).

This intermediate representation allows different modules to inter-operate, and for compiler writers

to come up with novel combinations. For example obfuscation can be a module, and it can be

combined with a separate optimization module.
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5.6.4 Intermediate Representations for Different Systems

An extension to the ideas of LLVM, Multi-Level IR or MLIR [105] aims to provide a similar

framework and modular system, but to handle the case of compilers for very different targets, from

GPU/CPU/TPU differences, all the way to the difference between single-core CPU and multiple-

machine distributed system. By treating these differences with the same theoretical framework,

MLIR authors hope to achieve the same benefits of LLVM’s modular architecture, but for vastly

different target architectures.

5.6.5 OpenCL

OpenCL [106] is an open language specification aimed at efficient computation using heteroge-

neous processing elements. The basic architecture consists of a single host working with one or

more compute devices, each with one or more compute elements. Its execution model uses the

idea of kernels which execute on the compute elements and are managed by the host program.

OpenCL’s memory model supports several scopes (global, workgroup-local, and private) as well

as immutable (constant) global memory. Allocation strategies are dynamic for the host and static

for kernels.

OpenCL supports both data parallel and task parallel execution models. Hierarchical parallelism

can be managed explicitly by the programmer or implicitly by the OpenCL implementation.

Since OpenCL aims to offer a single language interface for orchestrating work across heteroge-

neous platforms, this simplifies the task of finding vulnerabilities which leverage flaws at different

application layers. Also, by having a formalized memory, execution, and programming model,

testing can target both host and kernel endpoints simultaneously and use the same interfaces. A

unified programming language and model also reduces the amount of duplicated code and pro-

vides fewer opportunities for bugs and vulnerabilities to appear in the first place. Finally, if FPGA

designers create hardware which adheres to the specifications of the OpenCL model, then testing

applications which are built on that hardware can be simplified.

95



5.6.6 Compiler Vulnerabilities

Compilers are the “lowest level” of the software supply chain. Nearly everything is built on top of

the results of compilers, from terminals to text editors to web browsers. If one of these components

is not built directly by a compiler, it is likely that it is built by a separate component which in turn

was built by a compiler. Compilers are used to build the software which is in turn used to design

hardware, so in a sense, compilers are “below” the level of modern computer hardware. Because

of this fundamental nature of compilers, a compiler has nearly unlimited power. And a malicious

compiler therefore is extremely dangerous to society.

In [79], Thompson illustrates that it is possible to insert malicious code into a compiler, then

compile the compiler’s source code, and remove the traces of the malicious code from the source,

leaving behind the malicious executable code. Thompson ensured that all the tools built by this

compiler would cooperate with the malicious code, such that even attempting to disassemble the

malicious compiler binary would reveal no evidence of the attack. Further, Thompson designed

the compiler so that it would propagate its malicious code when used to compile a source code that

was not malicious.

The motivation for an attacker to perform this type of attack is extremely high, due to the compiler

being used to generate so many other parts of a system. Detecting this type of attack is also

extremely difficult, because the malicious code takes steps to hide itself from an investigator.

Fortunately, Wheeler found a counter to this attack in [80]. The basic idea to countering this attack

relies on a separate compiler and careful composition and comparison of separate compiler results.

Start with a “trusted compiler” binary T , and unknown compiler binary A. Use A to compile the

source code for A, testing whether A is capable of self-regenerating, and obtain the result binary

B. The fact that A can self-regenerate does not indicate that it contains malicious code, but self-

regeneration is necessary to replicate the Thompson attack. Next, compile A’s source using T ,

resulting in a new binary TA1. Then, compile A’s source using TA1, resulting in a new binary

TA2. Finally, compare A, TA1, and TA2 in a trusted environment. To be trusted, the environment

should be at minimum free of utilities which were compiled by A. If all three of A, TA1, and TA2
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are bitwise identical, then the source of A “accurately reflects” A. If not, then A may contain the

Thompson attack.

There are some caveats to this mitigation. First, T has to implement any non-standard extensions

in the same way as A. All the compilers in question must be deterministic. And most importantly,

T must be trustworthy.

This may mean building T yourself so you can be confident that does not contain the malicious

code. However, in practice, it is considered reasonable to simply obtain a different compiler for

T , because the chance of two separate compilers containing exactly the same malicious code is

perhaps small. The two compilers A and T can both actually be malicious, but as long as they are

not malicious in the same way, this method will detect an inequality between A, TA1, and TA2.

As Balakrishnan et al. point out, “What You See Is Not What You Execute” [107]. For any

given piece of software, the source code is the part intended for humans to read. Source code

is the interface between the programming system and the human designers, so it is designed for

humans to express their intent, and (hopefully) easy for other humans to read. Binary code, by

contrast, is designed for the computer to execute and offers no provisions for human readability.

Therefore, most people do not read the binary code, but instead read the source code of a program.

However, the source code is what the computer actually executes. Any vulnerabilities, errors, or

malicious code must therefore exist in the binary form. But because of the difficulty in reading and

interpreting binary code, finding vulnerabilities in binary code is non-trivial. Further compounding

this difficulty is the fact that errors in compilers can introduce vulnerabilities in binary code, even

when the source code contains no error. One extremely common source of this type of error is

“undefined behavior” in compilers. This is a situation in which the language does not specify

the semantics of some string of syntactically valid code. In these situations, a compiler can do

anything at all while still claiming to faithfully compile. Compiler writers may choose to cause

the compilation to fail if undefined behavior is detected. However, in other cases, the compiler

may proceed to compile the program, and make some arbitrary choice of what to do with the code

which triggers the undefined behavior.
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5.7 Firmware

“Firmware” generally refers to the program which manages initial device configuration, or which

is intended to run with full control over the device’s hardware. In systems which do not have

operating systems, the firmware is often the only program that runs on the device. In systems with

operating systems, the firmware typically runs at initial power on time, to configure the hardware

in preparation for giving control to the operating system. Internet of Things (IoT) devices and

embedded systems (such as automotive computer systems) are classes of systems in which the

firmware is significant. As previously mentioned, fuzz testing or fuzzing is a dynamic analysis

method to explore code paths in a running system. Feng et al. [89] note the difficulties of applying

fuzz testing to firmware and propose a methodology to work around these difficulties.

The main challenge in fuzzing firmware is interacting with peripherals. Peripherals are hardware

devices attached to the computing device, so testing normally requires exercising the physical

device hardware and observing its real-world effects. Even if these peripherals can be virtualized,

the input/output (I/O) interfaces are still usually the slowest part, and their implementation as a

physical interface makes parallelism more difficult to implement correctly. Feng et al. note that

I/O can be 3 orders of magnitude slower than “native” (e.g. CPU-memory) operations. Further

challenges to fuzzing firmware include limited microcontroller (MCU) emulator support and the

fact that many firmware systems use custom operating systems, real-time operating systems, or

“bare metal” libraries.

The approach by [89] called Processor-Peripheral Interface Modeling (P2IM) solves these chal-

lenges and permits the use of generic fuzz testing software to test firmwares. First, no physical or

emulated peripherals are used. Instead, they use a concept called “approximate MCU emulation”

in which the exact responses of a peripheral are not required, but instead use the much more re-

laxed requirement that the responses from a peripheral do not cause the system to crash. P2IM also

provides a method to generate such approximate MCU emulators, and to create abstract template

MCUs, for example based on the ARM Cortex-M MCU. This process infers firmware-specific in-

98



formation via a process they call “explorative firmware executions”, and this technique allows for

model instantiation on-demand.

5.8 Control Flow Graph (CFG) Analysis

5.8.1 CFG Algorithm Comparison

In their paper, Chan et al. show a method to detect similarity in software [17]. One of the co-authors

of this paper is the primary Tigress developer, a software obfuscation framework. They note that

real-world CFGs tend to have some specific properties, such as out-degrees of 2 or less (unless the

CFG includes a switch statement or an exception). They also often resemble series-parallel graphs,

and are usually reducible to small basic blocks of between ≈ 4 to 7 instructions.

While general-purpose graph similarity measures are expensive to compute, it is possible to lever-

age heuristics about real-world CFGs to improve analysis time. Their method uses predefined

CFGs with known edit distances to evaluate CFG similarity. Graph edit distance is defined, along

with a cost function for the different edit operations such as add/delete node, or add/delete edge.

This method ranks graph similarity algorithms according to this cost function, by first generating

CFGs of increasing edit distance, then running the algorithm under test and ranking its results. It

compares the current algorithm’s rank to the ground truth using a sortedness or Pearson correla-

tion to obtain a score of quality for the algorithm. A limitation of this study is that it only studies

graph topology, so if it encounters two different sets of instructions that nonetheless have the same

topology, then they would be considered equal.

In this study, four algorithms are compared:

• Kruegel, which uses a fingerprinting technique

• Hu, which is based on edit distance

• Avujosevi, which uses neighbor matching, and

• Sokolsky, which is simulation-based.
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Overall, they find that the Hu algorithm obtains the highest score.

5.8.2 discovRE

An approach to cross-architecture bug finding called discovRE uses signal processing techniques,

such as k-nearest neighbors (KNN) and graph analysis techniques such as maximum common

subgraph isomorphism (MCS) [22]. The authors note that compiler optimization makes binary

bug search an NP-complete problem. To reduce the search space, discovRE pre-filters its inputs,

and focuses on a “bug database” similar to the approach of [30]. Their approach extracts features

such as:

• number of instructions

• size of local vars

• number of basic blocks

• function CFG

Then uses a numeric filter (KNN) and a structural filter (MCS) on the disassembled binary to find

the bugs based on their similarity to those in its database. To improve the results, discovRE adds

diversity to their database by using 4 different compilers, covering both x86-based and ARM-based

architectures, and obtains source code from multiple open source software projects.

5.8.3 Zynamics Bindiff

A method for detecting similarities in binary files, with an emphasis on graph matching, is called

Bindiff and integrated into the IDA Pro reverse engineering software as an extension [21]. This

extension also includes some features to match known standard library functions, but a limitation

is that it can only match functions for which it has already acquired a fingerprint.
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5.9 Machine Learning for Software Reverse Engineering

Advancements in GPUs and neural network theory in recent years have revitalized the field of ma-

chine learning. Early successes in computer vision and natural language processing have inspired

others to try to use machine learning (ML) for reverse engineering. More recently, large reposi-

tories of source code have been used as training data for AI assisted code generation. However,

inferring meaning from code has proven more challenging than generating code from “docstring”

text [108].

A common challenge of applying machine learning to any task is availability of data. Even a well-

funded machine learning company recently canceled its successful robotics lab due to lack of data

[109]. Therefore, the barrier to applying machine learning to software is lower than to hardware,

primarily because generating compiled software is faster.

5.9.1 CNN and Data Augmentation

Applying an already developed approach, such as a convolutional neural network (CNN) can pro-

duce good results if the data is a good fit for the model. Catak et al. create an “image” from a

malware using term frequency - inverse document frequency (TF-IDF) representation [7]. They

then apply data augmentation using additive noise, similar to computer vision applications which

apply noise to real images, in order to artificially increase the sample data size. The authors claim

that adding Poisson noise to this image representation achieves perfect accuracy.

5.9.2 Siamese Networks for Similarity

Liu et al. [28] note that previous approaches [20]–[23] all rely on CFGs and “expert knowledge”,

which may introduce bias. Existing solutions which consider binary semantics [19], [20] rely on

computationally expensive theorem proving, which is sensitive to minor changes in semantics due

to patch changes. This sensitivity gives too many false negative results, essentially classifying a

binary as “different” when it should instead classify it as a “near match”. Instead, as noted by
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[110], it is possible to train a neural network on the raw bytes of the compiled binary and achieve

good results without disassembly or preprocessing.

Liu et al. describe a network (using pairs of match- and non-match functions) with CNN as input

which embeds the matrix-encoded input as a feature vector prior to ingestion by a Siamese network

with Euclidean loss function. This basic architecture is shown in Figure 5.10.

Figure 5.10: CNN → Siamese Model

5.9.3 Asm2Vec

One approach called Asm2Vec by Ding et al. [13], tries to categorize and detect clones in binary

software. Clone detection is difficult for traditional methods due to both software optimization and

intentional obfuscation. Existing SOTA approaches at the time of this paper do not capture rela-

tionships between features and assume features are independent. For example, LSH-S [27], ngram

[111], n-perm [111], BinClone [112], and Kam1n0 [113] use frequency counts for operators and

operands in a disassembled binary. Meanwhile Tracelet [114] uses edit distance, and discovRE

[22] and Genius [23] use synthesized features such as arithmetic instruction to control transfer in-

struction ratios, or basic block counts. Asm2Vec uses obfuscator-llvm [26], an obfuscation module

for the LLVM compiler toolchain, to produce diverse binaries from known inputs that use one or a

combination of obfuscation modes:

• Bogus Control Flow Graph
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• Control Flow Flattening

• Instruction Substitution

Ding et al. attempted to use Tigress to obfuscate the source code itself, rather than the IR, but could

not get the generated code to correctly compile. Asm2Vec learns a 200-dimensional vector for

assembly functions, and is able to classify functions into logically correct categories. For example,

when viewed in a 2-dimensional PCA projection, functions such as memcpy and strcpy are

close to each other, and file related functions are also grouped together.

5.9.4 Malware Detection from Small Samples

Hasegawa et al. show that even a simple one-dimensional CNN can reliably discriminate between

malware and “goodware” [115]. Even more impressive is achieving 97% accuracy from only the

last 1024 bytes of the binary file.

5.9.5 Graph Embedding

Rather than rely on manual feature engineering, Massarelli et al. use a recurrent neural network

(RNN) to extract features automatically [116]. They try to show compiler provenance by binary

similarity measurements, and compare their approach of unsupervised feature learning to manual

feature engineering. This approach uses graph embedding to achieve improved results over manual

feature engineering.

Graph embedding itself is described by Xu et al. in [58]. They describe a method which they

call Structure2Vec, which uses a Siamese network to determine similarity. Their default policy is

that “same functions are similar” and “non-same functions are different”. Their model uses cosine

similarity to determine similar or different scores for a given pair of functions. To evaluate their

results, they compare against codebook graph embedding of Genius [23] which contains 33,045

firmware images. Xu et al. claim the neural network does a better job of learning features than

graph matching algorithms.
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Figure 5.11: DeepWalk Latent Representation [49]

As shown in Figure 5.11, DeepWalk [49] illustrates that a model can learn a latent representation

of graph data in a lower-dimensional space. The intuition of this approach is that random walks

through a graph are a close approximation of semantic connections between nodes in a graph. This

approach is used to classify text data.

Similarly, Node2Vec also uses a random walk procedure to sample neighborhoods, which allows

to “smoothly interpolate between BFS and DFS”. However, this random walk procedure is biased

with edge weights, so choosing the next node can be influenced by these weights as shown in

Figure 5.12.

Figure 5.12: Random Walk [6]
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5.9.6 Language-Independent Algorithm Detection

Another project which uses a Siamese network [5], by Nghi et al., obtained ≈ 3500 implementa-

tions of 6 different algorithms from GitHub. These algorithms include classic homework problems

such as merge sort, bubble sort, knapsack. The languages used in the implementations include

Java and C++. The goal is to detect if two separate programs, which use different programming

languages, implement the same algorithm or not.

5.9.7 Deep Networks

Gupta et al. use a multi-layer network with an attention mechanism [12] on a dataset of student

homework submissions with errors. The goal of this model is to fix coding errors automatically.

Their results are promising: 27% of errors can be completely fixed, and 19% can be partially fixed,

all without manual intervention.

5.9.8 Attention for Graph Neural Networks

Thekumparampil et al. note that a linear neural network model without fully connected layers

performs well on graph data [117]. This approach reduces the total number of required parameters,

and by adding an attention mechanism, weights among neighbors can show how these neighbors

influence each other. Allamanis et al. noted that it is possible to use an attention mechanism

for summarizing source code in their work, but this did not consider obfuscated source code nor

compiled binary artifacts [118].

5.9.9 Language-Independent Code Semantic Learning

Ben-Nun et al. define a novel IR that describes contextual flow, and create a graph embedding

called “inst2vec” [119]. Their model uses a recurrent neural network (RNN) on inst2vec graph

embeddings and the authors claim SOTA performance.
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5.10 Symbolic Execution

Symbolic Execution is a powerful technique which is somewhat limited by its computational ex-

pense. Shoshitaishvili et al. describe a system called Firmalice [75], which tries to find backdoors

or authentication bypass in software binaries. Firmalice was later integrated into angr. Another

tool, called Miasm lifts assembly code into an IR, in order to use symbolic execution and run the

IR with specific values and emulate a code’s semantics [120]. It is used by the Sibyl project to

“identify functions from their side effects”.

In an effort to improve the efficiency of symbolic execution, Wang et al. reduced part of the con-

straint solving task into a Markov decision process [121]. Their experiment shows an improvement

over existing heuristic-based approaches. They used this to develop a greedy algorithm to approx-

imate the optimal result. This approach depends on a sub-function which finds a local optimal

strategy, such as a solver or concrete execution. Another project, called PANDA, uses the QEMU

emulator and a compact representation to find “repeatable traces” of a program [122]. Similarly,

Egele et al.’s approach [36] executes functions in a sandbox and analyzes their side effects. This

approach leverages graph isomorphism and heuristics to improve analysis time.

5.11 Graph Algorithms

Modern machine learning techniques are fundamentally statistical techniques which operate in a

continuous state space. Therefore, being able to model graphical data relationships, which are

inherently discrete, in continuous space, is an important first step to applying machine learning

to linked, relational, or generally graph-shaped data. Some fundamental graph techniques include

searching or traversing graph data structures, either in Breadth-First Search (BFS) or Depth-First

Search (DFS) order. These search patterns have different properties in terms of memory usage,

run time, and ability to find global optima. In addition to search, there are other graph techniques

applicable to EDA security, some of which are summarized here.
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5.11.1 Graph Isomorphism

As noted in many of these works, both programs and hardware descriptions may naturally be rep-

resented as graphs. Finding similarities between graphs (graph isomorphisms) is an important part

of analyzing hardware and software binary code. Subgraph isomorphism is an NP hard problem

[123], and the first practical algorithm appears in 1976 by Ullmann. Ullmann’s algorithm [124]

“inferentially eliminates successor nodes” for efficiency, and uses an adjacency matrix to find

where the subgraph similarity stops. Finally, it prunes the subgraph to avoid searching where no

similarity is possible.

In software, many projects are built using standard libraries of functions, so that programmers

can focus on their unique application, and take advantage of general-purpose system functionality

developed by others. Because of the common reliance on standard library functions, reverse engi-

neers can benefit from some method of automatically detecting them within binaries. At the time

of Qiu et al.’s paper on this subject [44] in 2015, the approach for identifying library functions

in binary code is the FLIRT plugin for IDA Pro [38]. FLIRT uses pattern matching on the first

32 bytes of a disassembled function, and is confused by both inlining and compiler instruction

reordering. Qiu et al. achieve two results in their paper:

• they extend the CFG with an Execution Dependence Graph

• they find library functions by subgraph isomorphism

Finding library functions in stripped binaries is naturally more difficult than finding them in bina-

ries which retain all their symbols. An approach by Jacobson et al. compares favorably to FLIRT

even though it also uses a library fingerprinting technique [125]. While FLIRT’s approach is not

robust to compiler optimization differences, the semantics are the same across all variations. By

only fingerprinting the wrapper functions for exported glibc functions, they claim to achieve 1.67

times better accuracy than FLIRT.
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5.12 Human Factors

Ultimately, RE is performed for a reason, and the human in the loop decides what is important and

what to search for. Humans doing any task are limited by the capacity of their working memory

(WM). This limits things like the number of variables a person can keep track of at a given time,

and exceeding this capacity causes WM errors to occur. There are multiple different types of WM

errors, and they depend on the person, the program tracing strategy (such as top-down or bottom-

up) and the program style (such as imperative or functional). Chrichton et al. recommend [126]

some ways in which to reduce WM errors:

• reduce variable scope, so variables are used near their definitions

• show variables to programmers

• externalize program state

• provide writable display interfaces for code where readers can add annotations

The authors note that some common practices, such as function parameters, may violate these

recommendations (by effectively causing the variable’s state to be lexicographically distant from

where it is used). However, they also point out that some programming environments, such as

DrRacket and the Lean language mode within Emacs, can assist with showing variables to pro-

grammers and help externalize the program’s state.

5.13 Simulation vs. Formal Verification [127]

It is relatively easy to generate tests to be run in simulation. However, obtaining useful test cover-

age is much more difficult. For example, pseudo-random simulation is easy to specify, but produces

incremental tests of low value. High-coverage testing is also resource-intensive. To illustrate this,

[127] notes that test simulation farms, consisting of hundreds of computers, may run for weeks in

order to obtain even moderate test coverage, but full coverage by this method is still intractable due
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to state space explosion. Emulators, constructed from FPGAs, may sometimes be used to speed

up simulation through hardware acceleration, but constructing them costs significant engineering

effort, and so this method is reserved for only designs which expect to sell in high volume. Mean-

while, formal verification can provide the equivalent of 100% coverage, by proving that a system

meets each of its specifications. However, implementing the formal verification test is more diffi-

cult, and in practice only done for simple modules.

5.13.1 Model-Based Formal Verification

Model-based verification is attractive because it can be fully automated. Essentially, this type of

verification performs a brute force exploration of the solution space. However, these models are

limited in depth due to state explosion and can only model some hundreds of latches. Symbolic

simulation tests multiple inputs in parallel by propagating a symbolic function vector through the

design.

5.13.2 Proof-Theoretic Methods

This approach uses theorem proving software to show that the model matches its specification.

This approach is used in conjunction with hierarchical design and abstractions to keep the scope

of each part manageable. However, this approach requires extensive human guidance, making it

impractical to scale to large designs.

5.13.3 Symbolic State Traversal

This method uses breadth-first search, which is linear in the number of variables and exponential in

number of memory elements. Because of this exponential factor, computing the “image” of states

reachable from the current state can take too long. If a bug is found by this approach, constructing

the input trace which produced the bug is also difficult.
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5.13.4 Symbolic Simulation

By propagating symbolic expressions, instead of concrete values, through a simulated circuit, a full

boolean description of the circuit is obtained. This allows testing in parallel as well as comparing

to the boolean expression of the formal design.

This can be implemented as an iterative algorithm which runs for N steps, and at each step com-

putes the outputs of the boolean circuit and, if the circuit has sequential logic feedback, saves them

as inputs for the next iteration step.

The approach in [128] uses an “abstract” approach to find non-reachable states, compacting the

search space. Their observation is that the complex boolean expressions at each simulation step

have more information than is required to identify reachable states, so a more compact (or “com-

pressed”) encoding can be used to classify reachable versus non-reachable states. This compressed

encoding allows better simulation scalability, and permits exploration into the range of a few thou-

sand latches, an order-of-magnitude improvement over the uncompressed approach.

5.13.5 Summary of [127]

These approaches improve the efficiency of logic simulations, which is essential for determining if

the logic design is correct and matches specifications. However, they do not consider the interaction

of the design with higher level protocols and applications. Testing at any level higher than logic

gate simulation is not considered, and so bugs at any higher level are out of scope for [127]. It is

at this higher level where side-channel vulnerabilities like Spectre and Meltdown occur.

Specifically, the techniques described by [127] do not address side-channel attacks. Therefore,

there is a clear need for testing methods which consider application-level defects whose root cause

manifests at the hardware level. Otherwise, despite using formal verification techniques, automatic

test generation, and concrete or symbolic simulation methods, side channel vulnerabilities will be

a persistent problem.
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5.14 OpenCL [106]

OpenCL is an open language specification aimed at efficient computation using heterogeneous

processing elements. The basic architecture consists of a single host working with one or more

compute devices, each with one or more compute elements. Its execution model uses the idea of

kernels which execute on the compute elements and are managed by the host program.

OpenCL’s memory model supports several scopes (global, workgroup-local, and private) as well

as immutable (constant) global memory. Allocation strategies are dynamic for the host and static

for kernels.

OpenCL supports both data parallel and task parallel execution models. Hierarchical parallelism

can be managed explicitly by the programmer or implicitly by the OpenCL implementation.

5.14.1 How OpenCL Relates to Hardware/Software EDA Security

Since OpenCL aims to offer a single language interface for orchestrating work across heteroge-

neous platforms, this simplifies the task of finding vulnerabilities which leverage flaws at different

application layers. Also, by having a formalized memory, execution, and programming model,

testing can target both host and kernel endpoints simultaneously and use the same interfaces. A

unified programming language and model also reduces the amount of duplicated code and pro-

vides fewer opportunities for bugs and vulnerabilities to appear in the first place. Finally, if FPGA

designers create hardware which adheres to the specifications of the OpenCL model, then testing

applications which are built on that hardware can be simplified.

5.15 High Level Synthesis

In FPGA synthesis tools such as Xilinx’s Vivado, High Level Synthesis (HLS) permits writing code

with C-like syntax and semantics, and then deploying that code as a hardware configuration on an

FPGA. For nearly all varieties of HLS in use today [129], including Xilinx’s own HLS, the C-level

code is first compiled to synthesizable RTL code, which then goes through the standard FPGA
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synthesis toolchain steps such as technology mapping, place and route, and bitstream generation

[130]. Besides Vivado HLS, other types of HLS include [131]–[133] and many others as mentioned

by [134]:

. . . Among these tools are Mentor Catapult C Synthesis, Forte Cynthesizer, Celoxica

Agility compiler (sold in 2008 to Catalytic, which renamed itself Agility Design So-

lutions), Bluespec, Synfora PICO Express and Extreme, ChipVision PowerOpt, NEC

CyberWorkBench, AutoESL AutoPilot, Xilinx AccelDSP (which started as the prod-

uct of an independent company, AccelChip) and SystemGenerator, Esterel EDA Tech-

nologies Esterel Studio, Synopsys Synplicity Synplify DSP, and, just announced in the

summer of 2008, Cadence C-to-Silicon (C2S) compiler.

With rare exceptions, every one of these projects compiles a C-like input language (typically C

or C++) into Verilog or VHDL as its output language. RTL in general, and Verilog specifically,

is therefore an intermediate representation within the overall compilation process of transforming

HLS code into a hardware configuration. One possible reason why so many HLS implementations

output Verilog is that the synthesis tools do not expose any other input format.

5.16 Alternatives to HLS

Proprietary software like Vivado exposes some interfaces to scripting the tool, with varying levels

of granularity. Both current and previous versions of Xilinx’s FPGA synthesis tools, and Altera’s

Quartus EDA tool, provide interfaces to their placement and routing engines, to allow external

tools to customize these phases to varying degrees. Modern FPGA synthesis tools also provide

internal scripting, usually by a Tool Command Language (TCL) interpreter with access to selected

commands.

TCL’s main drawback is its slow execution speed, and more recent tools like RapidWright have

achieved nearly 2 orders of magnitude speedup (88x faster) in the task of importing look-up tables

(LUTs) into Vivado by bypassing the TCL interpreter [135]. Nevertheless, scripting the synthesis
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tool remains a popular method of allowing user-defined extensions to the scripting tool.

5.17 Graph Representation in EDA Tools

5.17.1 In FPGA Synthesis

According to [136], netlists are commonly represented as graphs:

Existing CAD tools represent their netlists with graph structures. The range of internal

representations of these graphs is not too large - they usually consist of an array-of-

structs, where each net has forward and backward pointers to each net it drives/is

driven by.

In general this solution works well but requires the entire design to be flattened

which expands the memory footprint and limits the tool’s ability to exploit multiply-

instantiated modules for performance.

Using graph algorithms, FIRRTL performs dead code elimination, constant propagation (through

modules), determines a module’s clock domain and clock crossings, as well as detecting combi-

national logic loops, or asserting that all paths between two signals take exactly N cycles [136].

However, the optimizations done by FIRRTL are separate from those done by downstream tools.

According to Brayton et al, logic synthesis uses environmental information, such as signal arrival

and timing requirements, parasitics, and don’t-care conditions, to produce a “correct implementa-

tion which meets timing and testability constraints and minimizes area”. Logic synthesis primarily

involves combinational logic, and sequential logic is treated separately, at least at the time of pub-

lication of [137] (1990) [137]. When describing the background for their machine learning-based

approach to logic optimization, Neto et al. mention [138] that two primary representations are used

for optimizing logic: either an And-Inverter Graph (AIG) or a Majority-Inverter Graph (MIG). A

MIG output is true when a majority of its three inputs are true, and both permit negation of edges,

so both graph data structures are able to describe universal logic. Boolean circuits are partitioned

113



into subgraphs and the major contribution of [138] is to automatically choose either MIG or AIG

representation to achieve more optimal results without human intervention.

Several papers [139]–[141] describe how logic minimization and other aspects of CAD/EDA work-

flows can be formulated as graph problems. In particular, graph algorithms that correspond to EDA

tasks include the following list (compiled by [140]):

• set covering for logic partitioning [142], [143]

• state encoding [139], [144]–[146]

• logic minimization [147]

• planar routing [148]

5.17.2 In Compilers

Compilers commonly express many parts of a program as graph data structures, and use graph al-

gorithms on these data structures [149]. For example, expressing the dependencies of variables and

values from earlier to later statements results in a directed, acyclic dependency graph. Transforma-

tions on this graph data structure include renaming, expansion, node splitting, and forward substi-

tution [149]. Graph structures are also used to represent data flow and control flow [150], and this

facilitates modifications such as searching, merging, inserting, and deleting nodes or edges from

the graph in the course of various optimizations, such as minimizing the length of critical paths and

minimizing the number of array access nodes in the flow graph. In their Essentials of Compilation,

Siek et al. describe [151] a compiler architecture as primarily consisting of transformations on

abstract syntax trees (ASTs), a type of graph data structure. Several important operations within

the compiler framework they describe are formulated as graph algorithms, such as

• building an interference graph for liveness analysis

• implementing graph coloring for register allocation

• copying a graph as one part of garbage collection (Cheney’s algorithm [152])
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• mapping expressions to control flow graphs to support conditional expressions

• converting ASTs into control flow graphs

Interprocedural dependence analysis is performed by [153] using a “value flow” graph (VFG) after

converting the linked program to static single assignment (SSA) form, which itself is computed

using graph algorithms and stored as a graph data structure [154]. Graph algorithms are heavily

used in compilers as noted by [155], in relation to the following tasks associated with compilation:

• depth first walks to find strongly connected components

• constructing intervals to facilitate flow graph reduction

• reachability analysis (for constructing def-use chains)

• liveness analysis

• finding “busy” expressions as candidates for code hoisting

• constant folding

• finding dominators

5.17.3 In Both

Recently, there is renewed interest in the heuristic-based Espresso [156] algorithm, long used in

FPGA and ASIC EDA tools for logic minimization, and itself an improvement over the early

Quine-McCluskey algorithm [156]. Kanakia et al. recognized that within deep learning network

inference, large and sparse (many “don’t care” states) boolean functions are often generated, and

so they devised a GPU-based parallel improvement over Espresso-II (97x faster) [157].
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CHAPTER 6

DISCUSSION

6.1 Results and interpretation

The most important contributions of this dissertation are the following three contributions:

1. a method of data augmentation based on source code obfuscation which facilitates large-

scale binary synthesis from few source samples

2. multiple methods of processing compiled binary data into formats which can work with

existing deep learning models

3. an example application which detects known functions within unknown binary code

Some of our findings are in line with what we expected to find based on our survey of related litera-

ture. Our fundamental assumption held true: training on larger and more diverse datasets improves

the quality of a machine learning model’s results. A key challenge of this work was determining

which methods of synthesizing larger datasets are appropriate for binary compiled program data,

and evaluating those with both existing and new deep learning models. Regarding the utility of

binary code-specific specialized feature engineering versus generalized or data-agnostic model ap-

proaches, in this work we converged on a balance which uses some of both. In particular, the use

of disassemblers proved to be critically valuable in the series of steps used to transform binary data

into a format usable by deep learning models. With few exceptions, deep learning models require

their inputs to be in the form of vectors of numbers. Representing the input as a bag-of-words

at the byte level proved more effective than using a bag-of-words at the disassembly text token

level. Still, investing some effort to transform binary program data into vectors of numbers made it

possible to evaluate existing machine learning models and more quickly explore the design space

of this domain. We also noted that considering the graph structure of binary or assembly code im-

proved model quality, although this result is not as strong as expected. However, the utility of this
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graph representation is not limited to its use as an input format, because the ability to synthesize

random walks through an existing control flow graph affords an additional form of obfuscation. In

our experiments we included a fixed number of random walks, each of a fixed length. However,

the number and length of these random walks is another hyperparameter which can be varied at

will both during the dataset augmentation phase as well as during the training phase.

Some related works use methods for data augmentation inspired from different fields such as nat-

ural language processing (NLP) and computer vision, with varying degrees of success. In some

cases, binary data is interpreted as flattened image data and reshaped from a linear sequence into

a rectangular matrix to be used with existing computer vision models [11]. These approaches at-

tain some successes, but we argue that such reshaping is not appropriate for binary data, because

computer vision techniques such as two-dimensional convolutions and two-dimensional pooling

inherently create spatial meaning: nearby image pixels are often related to each other, but binary

data arbitrarily reshaped into rectangles has no such semantics.

The fields of computer vision and NLP can use random noise effectively for data augmentation,

but we found this to be detrimental for binary program classification. One possible explanation is

that noise in natural language data may take the form of spelling errors or insertion, deletion, or

transposition of words within a document. Such noise often does not drastically alter the meaning

of the larger sentence or document. In computer vision, added noise may imply shifting the color

values of random pixels within an image. Unless a large fraction of the pixels are replaced with

noise, we can usually still recognize the original image. However for binary program data, the

addition of a small amount of noise does not change the meaning of the program by a correspond-

ingly small amount. Rather, a single wrong bit often results in an invalid program. In short, what

works for augmenting images or text does not necessarily work for augmenting programs.

Of the related works that employ obfuscation, such as [26] and [37], most use obfuscator-llvm or

custom machine code transformations to achieve obfuscation of the binary code. By contrast, we

use Tigress which applies transformations at the source code level, transforming C source code

inputs into obfuscated C source code outputs. Because the outputs share the same format as the in-

117



put, it is natural to apply further transformations to the already-transformed outputs until a desired

level of complexity is reached. We show that machine learning models trained on obfuscated code

are more robust to new obfuscation types, making this approach a good choice for analyzing code

which could have been obfuscated by an adversary. We use an existing machine learning model

which is already effective for analyzing code and improve its performance by adding obfuscation

to its training dataset.

There are multiple ways to account for the graph structure of code. Some approaches, such as

[69], extract the control flow graph and then represent it as an adjacency matrix in order to analyze

it with a two-dimensional convolutional neural network (CNN). Others like [13] and [66] create

embedding vectors based on an instruction and its context. Most similar works which utilize

some form of the code’s control flow graph (CFG) obtain this graph using the reverse engineering

software IDA Pro. In our work, we extract CFGs using angr, with settings that result in disassembly

similar to that produced by IDA Pro. Whereas IDA is proprietary closed-source software with a

commercial license, angr is open-source with a permissive license. This makes our approach more

accessible to researchers with limited funds.

In multiple additional models we show that the representation of the input code matters and offers

trade-offs between training time, inference time, and quality of result.

6.2 Limitations

This work relies on a high quality source-to-source obfuscating tool such as Tigress, and inher-

its its limitations. For example, Tigress only works with C source code, and that code must be

self-contained in a single file and it must include a “main” function. However, while C is pro-

lific and used in critical software infrastructure across many domains, it is not the only language

or execution environment which could benefit from better static analysis or improved security.

The obfuscator-llvm project integrates with the llvm compiler tools to add obfuscation to any lan-

guage which can be compiled by llvm. While the work described in this dissertation does not use

obfuscator-llvm, we note other related works which do. Today, the primary reason for us to prefer
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Tigress over obfuscator-llvm is that Tigress permits more varied and higher absolute amounts of

obfuscation due to the fact that its output is in the same format as its input. This enables us to it-

eratively layer additional transformations one on top of the other, resulting in much more diversity

of output.

Obfuscator-llvm only has a handful of obfuscation types and to the best of our knowledge they can

not easily be combined sequentially to arbitrarily increase the obfuscation amount in the compiled

artifact. More importantly, these transformations occur within the intermediate representation (IR)

used internally by llvm, limiting the iterative combination of multiple transformations to those that

can operate on this IR. Because llvm supports multiple languages in addition to C, obfuscator-llvm

inherits that capability. We believe that despite these transformations happening in the IR level,

the presence of multi-language support will likely make obfuscator-llvm a preferable choice in the

future as languages other than C become more popular for low-level systems tasks. Long term,

it seems more practical to add IR-to-IR transformations to obfuscator-llvm than to build separate

source-to-source obfuscators for every language llvm already supports.

In this work we consider only one instruction set architecture (ISA) and focus primarily on one

operating system (GNU/Linux). The broader world of software is much more diverse. Supporting

additional ISAs will broaden the scope of this work, but a related area of research already focuses

on cross-architecture similarity. These related works attempt to find the commonalities between

similar code which has been created for different ISAs and/or different operating systems. Implicit

in these works is the assumption that there exists a useful abstract representation of code which

can be synthesized from the artifacts compiled for different environments. However, we note that

there already exists such an abstraction in the form of the original source code. But compilation is

a lossy process so these cross-architecture similarity methods do not aim to decompile into legible

source code, but identify major commonalities.

Dataset bias is inherent in our approach because we are essentially transforming a small number

of training samples into a larger number of samples. Data augmentation in general is likely to

amplify existing bias in a dataset, and our approach is no different in this regard. To mitigate this
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bias to some extent, we ensure that the number of samples for each training class are approximately

balanced. This prevents any single class from dominating the training set. However, we see some

evidence of this form of bias in the function prediction results in Figures 4.7 and 4.8, particularly

noticeable in the way our model overestimates the likelihood that the test program contains certain

functions, such as the daemon function.

The use of standard library functions biases our dataset toward compact and single-purpose func-

tions. We determined this to be an acceptable trade-off based on their relevance to reverse engi-

neering more broadly [38] as well as their familiarity to a general audience.

This dissertation utilizes graph features in different experiments - first in the ensemble model of

Chapter 3, and in a different way in the Block-Walk embedding model of Chapter 4. The first

method is only concerned with extracting graph metadata as another feature dimension for the

model. The second method incorporates graph features via random walks, which imparts some

elements of the program’s possible runtime behavior into a static representation that is safe to an-

alyze even if the program contains malware. A notable limitation of both of these methods of

incorporating binary program data’s graph structure is that neither is used in the embedding phase.

Recent works such as [158] note that self-supervised learning in graph neural networks, particu-

larly when trained on multiple tasks, can outperform supervised methods. Similarly, [159] achieve

high performance on node clustering using a self-supervised approach. Compilers generate pre-

dictable and idiomatic graphs of basic blocks, but certain subgraphs are likely to be more valuable

at identifying different functionality. Even in the presence of obfuscation, which may inject con-

founding block subgraphs, there should be some idioms that persist and help identify the function.

Therefore, self-supervised learning may improve results in our task at multiple phases: both during

embedding the data and during classification.

In this work we described the types of obfuscating transformations applied, but we spent much less

time describing the obfuscations we did not use. One type of obfuscation in particular is relevant

because it is highly effective: virtualization. In this type of obfuscation, rather than implementing

the code directly, the obfuscated program describes a virtual machine and the behavior is realized
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by actions taken by that virtual machine. This obfuscation method is more difficult to reverse en-

gineer than simpler transformations that encode literals or modify flow control. This work avoided

analyzing this kind of transformation for a mundane reason: Tigress support for virtualization is

error-prone. This might be a relief for the security analyst or reverse engineer; if it is hard to auto-

matically generate virtualized versions of a program using Tigress, then malware authors are less

likely to use it. But this relief will not last indefinitely, because Tigress is not the only obfusca-

tion tool, will likely improve in the future, and virtualizing functions has always been possible to

implement manually.

6.3 Unexpected results

In our experiment using a PV-DM model inspired by [13], we find a large improvement by using an

ensemble of voting classifiers, but no additional improvement by considering the graph metadata of

the input programs. This is contrary to our expectation that including metadata about the program’s

graph structure should enhance the model’s capability. On the other hand, a subsequent experiment

using the Block-Walk embedding model shows an improvement when including random walk data.

One possible explanation for this apparent disagreement between results is that the graph metadata

is not in a format as suitable for its model as the random walk data. In the PV-DM model, the

inputs are tokens while its graph metadata portion uses a Random Forest classifier. It is possible

that the number of features is too small for this type of classifier. Conversely, the random walk

data is in the same format as the basic blocks, and integrates naturally with the existing model.

Another unexpected result is the surprising effectiveness of the deflate+kNN model, and its perfor-

mance in classifying stripped data. We expected such a model to perform better when analyzing

an input program that contains debug symbols, but instead the impact on accuracy is negligible. In

addition, because the stripped programs are smaller, this model is able to produce results faster.

Finally, while we expected our Random Forest model to perform better when given disassembly

tokens as input, what we find instead is that modeling the input bytes as a bag of words is more

effective.
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6.4 Future research

One enhancement to this research is to include a broader set of functions within the training set.

Starting with a full set of standard library functions is one way to increase the breadth of the

dataset, but even better would be to include functions from third-party libraries or application code.

Another incremental but practical enhancement to this work is to include a mapping between the

predicted function and its position in the input binary. This would permit integration with existing

tools such as IDA Pro, Ghidra, or angr to pinpoint exactly those regions of the binary that are of

interest to the analyst.

One of our original research goals was to apply this approach to domains outside of source code,

such as to electronic design automation (EDA) tools that produce configurations for FPGAs or

ASICs. However, based on the amount of training data we believe to be necessary, existing Verilog

or VHDL based code generators are likely too slow, and to the best of our knowledge there is no

freely available repository of register transfer level (RTL) code suitable for training. Adapting the

methods of this dissertation to the EDA domain would therefore require finding a suitable data

representation which is amenable to an analogous method of data augmentation.

Lastly, this dissertation does not explore a transformer-based approach, although based on recent

successes of transformer-based architectures in language modeling including [118], it seems likely

that a similar architecture would also work well for binary program data. One gap we identified

in the related work is that some models use a pre-trained BERT model [70] but this model is pre-

trained on natural language data rather than on assembly or binary code data. Based on our results

we believe it would be valuable to experiment with a BERT model which has been pre-trained

on assembly or basic block tokens rather than natural language. Such a model would embody a

kind of language understanding for binary code which is fundamentally different from the language

understanding of natural languages, and possibly be better suited to tasks related to binary analysis.

122



CHAPTER 7

CONCLUSIONS

7.1 Structure

Binary code has a unique structure compared to natural language data, images, or audio data. From

the available methods for data augmentation which could be applied to code, we find obfuscation

is most suitable. Certain types of data, such as images or text, may be altered in subtle ways

with corresponding slight differences in the meaning of the transformed result compared to the

original. But in the case of binary compiled code, subtle changes typically result in invalid data.

This makes traditional methods of data augmentation poorly suited to binary analysis. Using a

source-to-source obfuscator facilitates arbitrarily high amounts of obfuscation and more diverse

training data.

7.2 Representation

In addition to choosing the right strategy for data augmentation, it is also critical to choose the right

representation of this data. By extracting basic blocks of a program’s control flow graph, we can

treat each block as a token within a vocabulary of blocks. This is more effective than representing

a program as a bag of words at the individual byte level, or using assembly language tokens, or

even separating instruction opcodes from their operands. We find that training a model for a clas-

sification task rather than predicting a token within its context also results in higher performance

for classifying regions of code according to the functions the model saw in training. More impor-

tantly, treating basic blocks as the fundamental token affords treating random walks and sequences

of basic blocks in a uniform way with a single deep learning model. This flexibility makes it trivial

to attach different weights to basic blocks versus walks through the same data. While domain-

agnostic approaches can analyze binary data, their effectiveness is limited. In this work we find

that deep learning based methods which take into account the unique structure of code are consis-
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tently better than domain-agnostic approaches. By treating basic blocks as words in a vocabulary,

we are able to strike a good balance of performance and accuracy. Most promising is the use of

models which, when trained on a mixture of plain and obfuscated data, are able to generalize from

both data categories. Such models enable better insights for reverse engineers without requiring

massive databases of sample code, and more importantly this approach is resilient to the challenges

of reality in which attackers have asymmetric advantage over defenders.

7.3 Application

Finally, this work demonstrates the first implementation of a general purpose method for identify-

ing known code within unknown, obfuscated, and stripped binary data. The scope of this initial

work is limited to a single ISA and a handful of small functions, but the underlying principles can

readily be adapted to different training data and different ISAs without loss of generality. Practical

applications of this work should consider training on first-party code for tasks such as intellectual

property identification, regression testing, or performance analysis. Conversely, as malware sam-

ple databases grow, security researchers can train on malware data to better detect new variants

before they are able to cause damage. Even before malware samples become available, this work

makes it easier and more practical to automate the process of finding regions of code within an

unknown program which are most interesting to a security analyst or reverse engineer. We believe

this dissertation demonstrates a viable and practical path forward for a new family of deep learning

based static analysis and is fertile ground for continued research.
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